Learning-dependent plasticity in the antennal lobe improves discrimination and recognition of odors in the honeybee

Abstract

Honeybees are extensively used to study olfactory learning and memory processes thanks to their ability to discriminate and remember odors and because of their advantages for optophysiological recordings of the circuits involved in memory and odor perception. There are evidences that the encoding of odors in areas of primary sensory processing is not rigid, but undergoes changes caused by olfactory experience. The biological meaning of these changes is focus of intense discussions. Along this review, we present evidences of plasticity related to different forms of learning and discuss its function in the context of olfactory challenges that honeybees have to solve. So far, results in honeybees are consistent with a model in which changes in early olfactory processing contributes to the ability of an animal to recognize the presence of relevant odors and facilitates the discrimination of odors in a way adjusted to its own experience.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

AL:

Antennal lobe

ORNs:

Olfactory receptor neurons

LNs:

Local neurons

PNs:

Projection neurons

MBs:

Mushroom bodies

LH:

Lateral horn

lALT:

Lateral antennal lobe tract

mALT:

Medial antennal lobe tract

mlALT:

Mediolateral antennal lobe tract

OA:

Octopamine

References

  1. Abel R, Rybak J, Menzel R (2001) Structure and response patterns of olfactory interneurons in the honeybee, Apis mellifera. J Comp Neurol 437(3):363–383. https://doi.org/10.1002/cne.1289

    CAS  Article  PubMed  Google Scholar 

  2. Ache BW, Young JM (2005) Olfaction: diverse species, conserved principles. Neuron 48(3):417–430. https://doi.org/10.1016/j.neuron.2005.10.022

    CAS  Article  PubMed  Google Scholar 

  3. Agarwal M, Guzmán M, Morales-Matos C, Del Valle Díaz RA, Abramson CI, Giray T (2011) Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay. PLoS ONE 6(9):1–9. https://doi.org/10.1371/journal.pone.0025371

    CAS  Article  Google Scholar 

  4. Andrione M, Timberlake BF, Vallortigara G, Antolini R, Haase A (2017) Morphofunctional experience-dependent plasticity in the honeybee brain. Learn Mem 24(12):622–629. https://doi.org/10.1101/lm.046243.117

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Arenas A, Giurfa M, Sandoz JC, Hourcade B, Devaud JM, Farina WM (2012) Early olfactory experience induces structural changes in the primary olfactory center of an insect brain. Eur J Neurosci 35(5):682–690. https://doi.org/10.1111/j.1460-9568.2012.07999.x

    CAS  Article  PubMed  Google Scholar 

  6. Bhagavan S, Smith BH (1997) Olfactory conditioning in the honey bee, Apis mellifera: effects of odor intensity. Physiol Behav 61(1):107–117. https://doi.org/10.1016/S0031-9384(96)00357-5

    CAS  Article  PubMed  Google Scholar 

  7. Bicker G (1999) Histochemistry of classical neurotransmitters in antennal lobes and mushroom bodies of the honeybee. Microsc Res Tech 45(3):174–183. https://doi.org/10.1002/(SICI)1097-0029(19990501)45:3%3c174::AID-JEMT5%3e3.0.CO;2-U

    CAS  Article  PubMed  Google Scholar 

  8. Bitterman ME, Menzel R, Fietz A, Schäfer S (1983) Classical conditioning of proboscis extension in honeybees (Apis mellifera). J Comp Psychol (Washington, D.C. : 1983), 97(2):107–119

  9. Brill MF, Rosenbaum T, Reus I, Kleineidam CJ, Nawrot MP, Rossler W (2013) parallel processing via a dual olfactory pathway in the honeybee. J Neurosci 33(6):2443–2456. https://doi.org/10.1523/jneurosci.4268-12.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Brill MF, Meyer A, Rössler W (2015) It takes two-coincidence coding within the dual olfactory pathway of the honeybee. Front Physiol 6:1–14. https://doi.org/10.3389/fphys.2015.00208

    Article  Google Scholar 

  11. Brown SM, Napper RM, Mercer AR (2004) Foraging experience, glomerulus volume, and synapse number: a stereological study of the honey bee antennal lobe. J Neurobiol 60(1):40–50. https://doi.org/10.1002/neu.20002

    Article  PubMed  Google Scholar 

  12. Campbell RAA, Honegger KS, Qin H, Li W, Demir E, Turner GC (2013) imaging a population code for odor identity in the Drosophila mushroom body. J Neurosci 33(25):10568–10581. https://doi.org/10.1523/JNEUROSCI.0682-12.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Chandra SBC, Wright GA, Smith BH (2010) Latent inhibition in the honey bee, Apis mellifera: is it a unitary phenomenon? Anim Cogn 13(6):805–815. https://doi.org/10.1007/s10071-010-0329-6

    Article  PubMed  Google Scholar 

  14. Chen J-Y, Marachlian E, Assisi C, Huerta R, Smith BH, Locatelli F, Bazhenov M (2015) Learning modifies odor mixture processing to improve detection of relevant components. J Neurosci 35(1):179–197. https://doi.org/10.1523/JNEUROSCI.2345-14.2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Claudianos C, Lim J, Young M, Yan S, Cristino AS, Newcomb RD, Reinhard J (2014) Odor memories regulate olfactory receptor expression in the sensory periphery. Eur J Neurosci 39(10):1642–1654. https://doi.org/10.1111/ejn.12539

    Article  PubMed  Google Scholar 

  16. Conchou L, Lucas P, Meslin C, Proffit M, Staudt M, Renou M. (2019) Insect odorscapes: From plant volatiles to natural olfactory scenes. Front Physiol 10(JUL). https://doi.org/10.3389/fphys.2019.00972

  17. Das S, Sadanandappa MK, Dervan A, Larkin A, Lee JA, Sudhakaran IP, Ramaswamia M (2011) Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci USA 108(36):2–10. https://doi.org/10.1073/pnas.1106411108

    Article  Google Scholar 

  18. de Jong R, Pham-Delègue MH (1991) Electroantennogram responses related to olfactory conditioning in the honey bee (Apis mellifera ligustica). J Insect Physiol 37(4):319–324. https://doi.org/10.1016/0022-1910(91)90066-9

    Article  Google Scholar 

  19. Deisig N, Giurfa M, Lachnit H, Sandoz JC (2006) Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur J Neurosci 24(4):1161–1174. https://doi.org/10.1111/j.1460-9568.2006.04959.x

    Article  PubMed  Google Scholar 

  20. Deisig N, Giurfa M, Sandoz JC (2010) Antennal lobe processing increases separability of odor mixture representations in the honeybee. J Neurophysiol 103(4):2185–2194. https://doi.org/10.1152/jn.00342.2009

    Article  PubMed  Google Scholar 

  21. Denker M, Finke R, Schaupp F, Grün S, Menzel R (2010) Neural correlates of odor learning in the honeybee antennal lobe. Eur J Neurosci 31(1):119–133. https://doi.org/10.1111/j.1460-9568.2009.07046.x

    Article  PubMed  Google Scholar 

  22. El Hassani AK, Giurfa M, Gauthier M, Armengaud C (2008) Inhibitory neurotransmission and olfactory memory in honeybees. Neurobiol Learn Mem 90(4):589–595. https://doi.org/10.1016/j.nlm.2008.07.018

    CAS  Article  PubMed  Google Scholar 

  23. Erber J, Masuhr T, Menzel R (1980) Localization of short-term memory in the brain of the bee. Apis mellifera Physiol Entomol 5(4):343–358. https://doi.org/10.1111/j.1365-3032.1980.tb00244.x

    Article  Google Scholar 

  24. Esslen J, Kaissling K (1976) Zahl und Verteilung antennaler Sensillen bei der Honigbiene ( Apis mellifera L .), 251, 227–228

  25. Faber T, Joerges J, Menzel R (1999) Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci 2(1):74–78. https://doi.org/10.1038/4576

    CAS  Article  PubMed  Google Scholar 

  26. Farooqui T, Robinson K, Vaessin H, Smith BH (2003) Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J Neurosci 23(12):5370–5380. https://doi.org/10.1523/jneurosci.23-12-05370.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Fernandez PC, Locatelli FF, Person-Rennell N, Deleo G, Smith BH (2009) Associative conditioning tunes transient dynamics of early olfactory processing. J Neurosci Off J Soc Neurosci 29(33):10191–10202. https://doi.org/10.1523/JNEUROSCI.1874-09.2009

    CAS  Article  Google Scholar 

  28. Flanagan D, Mercer AR (1989a) An atlas and 3-D reconstruction of the antennal lobes in the worker honey bee, Apis mellifera L. (Hymenoptera : Apidae). Int J Insect Morphol Embryol 18(2–3):145–159. https://doi.org/10.1016/0020-7322(89)90023-8

    Article  Google Scholar 

  29. Flanagan D, Mercer AR (1989b) Morphology and response characteristics of neurones in the deutocerebrum of the brain in the honeybee Apis mellifera. J Comp Physiol A 164(4):483–494. https://doi.org/10.1007/BF00610442

    Article  Google Scholar 

  30. Free JB (1987) Pheromones of Social Bees. Chapman and Hall, London

    Google Scholar 

  31. Friedrich A, Thomas U, Müller U (2004) Learning at different satiation levels reveals parallel functions for the cAMP-protein kinase A cascade in formation of long-term memory. J Neurosci 24(18):4460–4468. https://doi.org/10.1523/JNEUROSCI.0669-04.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Galizia CG, McIlwrath SL, Menzel R (1999) A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy. Cell Tissue Res 295(3):383–394. https://doi.org/10.1007/s004410051245

  33. Galizia CG, Sachse S, Rappert A, Menzel R (1999) The glomerular code for odor representation is species specific in the honeybee Apis mellifera. Nat Neurosci 2(5):473–478. https://doi.org/10.1038/8144

  34. Galizia CG, Kimmerle B (2004) Physiological and morphological characterization of honeybee olfactory neurons combining electrophysiology, calcium imaging and confocal microscopy. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190(1):21–38. https://doi.org/10.1007/s00359-003-0469-0

    CAS  Article  PubMed  Google Scholar 

  35. Galizia C, Vetter R (2004) Optical methods for analyzing odor-evoked activity in the insect brain. https://doi.org/10.1201/9781420039429.ch13

  36. Galizia CG, Rössler W (2009) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55(1):399–420. https://doi.org/10.1146/annurev-ento-112408-085442

    CAS  Article  Google Scholar 

  37. Galizia CG, Rössler W (2010) Parallel olfactory systems in insects: anatomy and function. Annu Rev Entomol 55(1):399–420. https://doi.org/10.1146/annurev-ento-112408-085442

    CAS  Article  PubMed  Google Scholar 

  38. Getz WM, Akers RP (1993) Olfactory response characteristics and tuning structure of placodes in the honey bee Apis mellifera L. Apidologie 24(3):195–217. https://doi.org/10.1051/apido:19930303

    Article  Google Scholar 

  39. Girardin CC, Kreissl S, Galizia CG (2012) Inhibitory connections in the honeybee antennal lobe are spatially patchy. J Neurophysiol (October 2012), 332–343. https://doi.org/10.1152/jn.01085.2011

  40. Grohmann L, Blenau W, Erber J, Ebert PR, Strünker T, Baumann A (2003) Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J Neurochem 86(3):725–735. https://doi.org/10.1046/j.1471-4159.2003.01876.x

    CAS  Article  PubMed  Google Scholar 

  41. Gronenberg W (2001) Subdivisions of hymenopteran mushroom body calyces by their afferent supply. J Comp Neurol 435(4):474–489. https://doi.org/10.1002/cne.1045

    CAS  Article  PubMed  Google Scholar 

  42. Guerrieri F, Schubert M, Sandoz JC, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS Biol 3(4):0718–0732. https://doi.org/10.1371/journal.pbio.0030060

    CAS  Article  Google Scholar 

  43. Haenicke J, Yamagata N, Zwaka H, Nawrot M, Menzel R (2018) Neural correlates of odor learning in the presynaptic microglomerular circuitry in the honeybee mushroom body Calyx. ENeuro 5(3):1–13. https://doi.org/10.1523/ENEURO.0128-18.2018

    Article  Google Scholar 

  44. Hammer M (1993) An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature 366(6450):59–63. https://doi.org/10.1038/366059a0

    CAS  Article  PubMed  Google Scholar 

  45. Hammer M, Menzel R (1998) Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees, 146–156. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC311245/pdf/x2.pdf

  46. Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20(1):595–631. https://doi.org/10.1146/annurev.neuro.20.1.595

    CAS  Article  PubMed  Google Scholar 

  47. Honegger KS, Campbell RAA, Turner GC (2011) Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J Neurosci 31(33):11772–11785. https://doi.org/10.1523/JNEUROSCI.1099-11.2011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Hourcade B, Perisse E, Devaud JM, Sandoz JC (2009) Long-term memory shapes the primary olfactory center of an insect brain. Learn Mem 16(10):607–615. https://doi.org/10.1101/lm.1445609

    Article  PubMed  Google Scholar 

  49. Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V, Vosshall LB (2014) A systematic nomenclature for the insect brain. Neuron 81(4):755–765. https://doi.org/10.1016/j.neuron.2013.12.017

    CAS  Article  PubMed  Google Scholar 

  50. Jernigan CM, Halby R, Gerkin RC, Sinakevitch I, Locatelli F, Smith BH (2020) Experience-dependent tuning of early olfactory processing in the adult honey bee, Apis mellifera. J Exp Biol 223(1). https://doi.org/10.1242/jeb.206748

  51. Joerges J, Küttner A, Galizia CG, Menzel R (1997) Representations of odours and odour mixtures visualized in the honeybee brain. Nature, 387, 285. Retrieved from https://doi.org/10.1038/387285a0

  52. Kirschner S, Kleineidam CJ, Zube C, Rybak J, Grünewald B, Rössler W (2006) Dual olfactory pathway in the honeybee, Apis mellifera. J Comp Neurol 499(6):933–952. https://doi.org/10.1002/cne.21158

    Article  PubMed  Google Scholar 

  53. Klappenbach M, Kaczer L, Locatelli F (2013) Neurobiology of Learning and Memory Dopamine interferes with appetitive long-term memory formation in honey bees. Neurobiol Learn Mem 106:230–237. Retrieved from https://doi.org/10.1016/j.nlm.2013.09.011

  54. Kreissl S, Eichmüller S, Bicker G, Rapus J, Eckert M (1994) Octopamine-like immunoreactivity in the brain and subesophageal ganglion of the honeybee. J Comp Neurol 348(4):583–595. https://doi.org/10.1002/cne.903480408

    CAS  Article  PubMed  Google Scholar 

  55. Krofczik S, Menzel R, Nawrot MP (2009) Rapid odor processing in the honeybee antennal lobe network. Front Comput Neurosci, 2(JAN), 1–13. https://doi.org/10.3389/neuro.10.009.2008

  56. Linster C, Sachse S, Galizia CG (2005) Computational modeling suggests that response properties rather than spatial position determine connectivity between olfactory glomeruli. J Neurophysiol 93(6):3410–3417. https://doi.org/10.1152/jn.01285.2004

    Article  PubMed  Google Scholar 

  57. Locatelli FF, Fernandez PC, Villareal F, Muezzinoglu K, Huerta R, Galizia CG, Smith BH (2013) Nonassociative plasticity alters competitive interactions among mixture components in early olfactory processing. Eur J Neurosci 37(1):63–79. https://doi.org/10.1111/ejn.12021

    Article  PubMed  Google Scholar 

  58. Locatelli FF, Fernandez PC, Smith BH (2016) Learning about natural variation of odor mixtures enhances categorization in early olfactory processing. J Exp Biol 219(17):2752–2762. https://doi.org/10.1242/jeb.141465

    Article  PubMed  PubMed Central  Google Scholar 

  59. Menzel R (1999) Memory dynamics in the honeybee. Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology 185(4):323–340. https://doi.org/10.1007/s003590050392

    Article  Google Scholar 

  60. Menzel R (2012) The honeybee as a model for understanding the basis of cognition. Nat Rev Neurosci 13(11):758–768. https://doi.org/10.1038/nrn3357

    CAS  Article  PubMed  Google Scholar 

  61. Müller D, Abel R, Brandt R, Zöckler M, Menzel R (2002) Differential parallel processing of olfactory information in the honeybee, Apis mellifera L. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 188(5):359–370. https://doi.org/10.1007/s00359-002-0310-1

    Article  PubMed  Google Scholar 

  62. Müller U (2000) Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron 27(1):159–168. https://doi.org/10.1016/S0896-6273(00)00017-9

    Article  PubMed  Google Scholar 

  63. Okada R, Rybak J, Manz G, Menzel R (2007) Learning-related plasticity in PE1 and other mushroom body-extrinsic neurons in the honeybee brain. J Neurosci 27(43):11736–11747. https://doi.org/10.1523/JNEUROSCI.2216-07.2007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Peele P, Ditzen M, Menzel R, Galizia CG (2006) Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 192(10):1083–1103. https://doi.org/10.1007/s00359-006-0152-3

    CAS  Article  PubMed  Google Scholar 

  65. Ramírez G, Fagundez C, Grosso JP, Argibay P, Arenas A, Farina WM (2016) Odor experiences during preimaginal stages cause behavioral and neural plasticity in adult honeybees. Front Behav Neurosci 10(JUN), 1–14. https://doi.org/10.3389/fnbeh.2016.00105

  66. Rath L, Giovanni Galizia C, Szyszka P (2011) Multiple memory traces after associative learning in the honey bee antennal lobe. Eur J Neurosci 34(2):352–360. https://doi.org/10.1111/j.1460-9568.2011.07753.x

    Article  PubMed  Google Scholar 

  67. Rein J, Mustard JA, Strauch M, Smith BH, Galizia CG (2013) Octopamine modulates activity of neural networks in the honey bee antennal lobe. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199(11):947–962. https://doi.org/10.1007/s00359-013-0805-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Robertson HM, Wanner KW (2006) The chemoreceptor superfamily in the honey bee Apis mellifera : Expansion of the odorant, but not gustatory, receptor family 1395–1403 https://doi.org/10.1101/gr.5057506

  69. Sachse S, Galizia CG (2002) Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study. J Neurophysiol 87(2):1106–1117. https://doi.org/10.1152/jn.00325.2001

    Article  PubMed  Google Scholar 

  70. Sachse S, Galizia CG (2003) The coding of odour-intensity in the honeybee antennal lobe: local computation optimizes odour representation. Eur J Neurosci 18(8):2119–2132. https://doi.org/10.1046/j.1460-9568.2003.02931.x

    Article  PubMed  Google Scholar 

  71. Sachse S, Peele P, Silbering AF, Gühmann M, Galizia CG (2006) Role of histamine as a putative inhibitory transmitter in the honeybee antennal lobe. Front Zool 3:1–7. https://doi.org/10.1186/1742-9994-3-22

    CAS  Article  Google Scholar 

  72. Sachse S, Rueckert E, Keller A, Okada R, Tanaka NK, Ito K, Vosshall LBB (2007) Activity-dependent plasticity in an olfactory circuit. Neuron 56(5):838–850. https://doi.org/10.1016/j.neuron.2007.10.035

    CAS  Article  PubMed  Google Scholar 

  73. Sandoz JC, Galizia CG, Menzel R (2003) Side-specific olfactory conditioning leads to more specific odor representation between sides but not within sides in the honeybee antennal lobes. Neuroscience 120(4):1137–1148. https://doi.org/10.1016/S0306-4522(03)00384-1

    CAS  Article  PubMed  Google Scholar 

  74. Sandoz JC (2011) Behavioral and neurophysiological study of olfactory perception and learning in honeybees. Front Syst Neurosci 5(DECEMBER 2011), 1–20. https://doi.org/10.3389/fnsys.2011.00098

  75. Schwaerzel M, Monastirioti M, Scholz H, Friggi-Grelin F, Birman S, Heisenberg M (2003) Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J Neurosci 23(33):10495–10502. https://doi.org/10.1523/jneurosci.23-33-10495.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Sigg D, Thompson CM, Mercer AR (1997) Activity-dependent changes to the brain and behavior of the honey bee, Apis mellifera (L.). J Neurosci 17(18):7148–7156. https://doi.org/10.1523/jneurosci.17-18-07148.1997

  77. Sinakevitch IT, Smith AN, Locatelli F, Huerta R, Bazhenov M, Smith BH (2013) Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster). Front Syst Neurosci 7(October):1–19. https://doi.org/10.3389/fnsys.2013.00070

    Article  Google Scholar 

  78. Sinakevitch I, Bjorklund GR, Newbern JM, Gerkin RC, Smith BH (2018) Comparative study of chemical neuroanatomy of the olfactory neuropil in mouse, honey bee, and human. Biol Cybern 112(1–2):127–140. https://doi.org/10.1007/s00422-017-0728-8

    Article  PubMed  Google Scholar 

  79. Smith BH, Huerta R, Bazhenov M, Sinakevitch I (2012) Distributed Plasticity for Olfactory Learning and Memory in the Honey Bee Brain. In Galizia CG, Eisenhardt D,  Giurfa M (Eds) Honeybee Neurobiology and Behavior: A Tribute to Randolf Menzel (pp. 393–408). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-007-2099-2_30

  80. Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odor discrimination on desynchronization of odor–encoding neural assemblies. Nature 390(August):70–74

    CAS  Article  Google Scholar 

  81. Strauch M, Ditzen M, Galizia CG (2012) Keeping their distance? Odor response patterns along the concentration range. Front Syst Neurosci 6(October):1–13. https://doi.org/10.3389/fnsys.2012.00071

    Article  Google Scholar 

  82. Strube-Bloss MF, Nawrot MP, Menzel R (2011) Mushroom body output neurons encode odor-reward associations. J Neurosci 31(8):3129–3140. https://doi.org/10.1523/JNEUROSCI.2583-10.2011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Strube-Bloss MF, Herrera-Valdez MA, Smith BH (2012) Ensemble response in mushroom body output neurons of the honey bee outpaces spatiotemporal odor processing two synapses earlier in the antennal lobe. PLoS ONE 7(11):1–13. https://doi.org/10.1371/journal.pone.0050322

    CAS  Article  Google Scholar 

  84. Szyszka P (2005) Sparsening and temporal sharpening of olfactory representations in the honeybee mushroom bodies. J Neurophysiol 94(5):3303–3313. https://doi.org/10.1152/jn.00397.2005

    Article  PubMed  Google Scholar 

  85. Takeda K (1961).Classical conditioned response in the honey bee. J Insect Physiol 6(3), 168–179. https://doi.org/10.1016/0022-1910(61)90060-9

  86. Vergoz V, Roussel E, Sandoz JC, Giurfa M (2007) Aversive learning in honeybees revealed by the olfactory conditioning of the sting extension reflex. PLoS ONE, 2(3). https://doi.org/10.1371/journal.pone.0000288

  87. Winnington AP, Napper RM, Mercer AR (1996) Structural plasticity of identified glomeruli in the antennal lobes of the adult worker honey bee. J Comp Neurol 365(3):479–490. https://doi.org/10.1002/(SICI)1096-9861(19960212)365:3%3c479::AID-CNE10%3e3.0.CO;2-M

    CAS  Article  PubMed  Google Scholar 

  88. Wright GA, Lutmerding A, Dudareva N, Smith BH (2005) Intensity and the ratios of compounds in the scent of snapdragon flowers affect scent discrimination by honeybees (Apis mellifera). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 191(2):105–114. https://doi.org/10.1007/s00359-004-0576-6

    CAS  Article  PubMed  Google Scholar 

  89. Wright GA, Skinner BD, Smith BH (2002) Ability of honeybee, Apis mellifera, to detect and discriminate odors of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus). J Chem Ecol 28(4):721–740. https://doi.org/10.1023/A:1015232608858

    CAS  Article  PubMed  Google Scholar 

  90. Wright GA, Mustard JA, Simcock NK, Ross-Taylor AAR, McNicholas LD, Popescu A, Marion-Poll F (2010) Parallel reinforcement pathways for conditioned food aversions in the honeybee. Curr Biol 20(24):2234–2240. https://doi.org/10.1016/j.cub.2010.11.040

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  91. Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning: Memory trace formation by synaptic recruitment. Neuron 42(3):437–449. https://doi.org/10.1016/S0896-6273(04)00217-X

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank two anonymous reviewers for insightful comments and suggestions.

Funding

The authors have been supported by grants from ANPCyT: Agencia Nacional de Promoción Cientifica y Tecnica, Argentina: PICT 2016-1755 to EM. ANPCyT PICT 2017-1285, CONICET and University of Buenos Aires to MK. ANPCyT PICT 2017-2284, CONICET and University of Buenos Aires to FL.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fernando Locatelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marachlian, E., Klappenbach, M. & Locatelli, F. Learning-dependent plasticity in the antennal lobe improves discrimination and recognition of odors in the honeybee. Cell Tissue Res 383, 165–175 (2021). https://doi.org/10.1007/s00441-020-03396-2

Download citation

Keywords

  • Honeybees
  • Olfaction
  • Plasticity
  • Antennal lobe
  • Learning