Skip to main content
Log in

Long INterspersed nuclear Elements (LINEs) in brain and non-brain tissues of the rat

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Long INterspersed Element-1 (L1) is a transposable element that can insert copies of itself in new genomic locations causing genomic instability. In somatic cells, L1 retrotransposition activity is usually repressed but somatic L1 retrotransposition has recently been observed during neuronal differentiation. In this study, we evaluate whether L1 elements are differentially active in rat tissues during postnatal development. To this purpose, we quantified L1 in genomic DNA extracted from the olfactory bulb (OB), cerebellum (CE), cortex (CO) and heart (H). Each analysis was repeated on rats aged 7, 21 and 60 days. We found that L1 content in OB and CE tissue was significantly higher than H tissue, in rats of all three ages studied, suggesting that L1 activity could be modulated in postnatal development and neurogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbott A (2004) Laboratory animals: the Renaissance rat. Nature 428:464–466

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128

    Article  PubMed  CAS  Google Scholar 

  • Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis. IV. Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137:433–457

    Article  PubMed  CAS  Google Scholar 

  • Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, De Sapio F, Brennan PM, Rizzu P, Smith S, Fell M, Talbot RT, Gustincich S, Freeman TC, Mattick JS, Hume DA, Heutink P, Carninci P, Jeddeloh JA, Faulkner GJ (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boissinot S, Sookdeo A (2016) The evolution of Line-1 in vertebrates. Genome Biol Evol 8:3485–3507

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brouha B, Schustak J, Badge RM, Lutz-Prigge S, Farley AH, Moran JV, Kazazian HH Jr (2003) Hot L1s account for the bulk of retrotransposition in the human population. Proc Natl Acad Sci U S A 100:5280–5285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bundo M, Toyoshima M, Okada Y, Akamatsu W, Ueda J, Nemoto-Miyauchi T, Sunaga F, Toritsuka M, Ikawa D, Kakita A, Kato M, Kasai K, Kishimoto T, Nawa H, Okano H, Yoshikawa T, Kato T, Iwamoto K (2014) Increased L1 retrotransposition in the neuronal genome in schizophrenia. Neuron 81:306–313

    Article  PubMed  CAS  Google Scholar 

  • Cassel S, Revel MO, Kelche C, Zwiller J (2004) Expression of the methyl-CpG-binding protein MeCP2 in rat brain. An ontogenetic study. Neurobiol Dis 15:206–211

    Article  PubMed  CAS  Google Scholar 

  • Cohen DR, Matarazzo V, Palmer AM, Tu Y, Jeon OH, Pevsner J, Ronnett GV (2003) Expression of MeCP2 in olfactory receptor neurons is developmentally regulated and occurs before synaptogenesis. Mol Cell Neurosci 22:417–429

    Article  PubMed  CAS  Google Scholar 

  • Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y, Lovci MT, Morell M, O’Shea KS, Moran JV, Gage FH (2009) L1 retrotransposition in human neural progenitor cells. Nature 460:1127–1131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Cecco M, Criscione SW, Peckham EJ, Hillenmeyer S, Hamm EA, Manivannan J, Peterson AL, Kreiling JA, Neretti N, Sedivy JM (2013a) Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell 12:247–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA (2013b) Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (12):867–883

  • Del Re B, Giorgi G (2013) Cell-host, LINE and environment: three players in search of a balance. Mob Genet Elements 3:1–4

    Google Scholar 

  • Del Re B, Marcantonio P, Gavoçi E, Bersani F, Giorgi G (2012) Assessing LINE-1 retrotransposition activity in neuroblastoma cells exposed to extremely low-frequency pulsed magnetic fields. Mutat Res 749:76–81

    Article  PubMed  CAS  Google Scholar 

  • Denli AM, Narvaiza I, Kerman BE, Pena M, Benner C, Marchetto MC, Diedrich JK, Aslanian A, Ma J, Moresco JJ, Moore L, Hunter T, Saghatelian A, Gage FH (2015) Primate-specific ORF0 contributes to retrotransposon-mediated diversity. Cell 163:583–593

    Article  PubMed  CAS  Google Scholar 

  • Erwin JA, Marchetto MC, Gage FH (2014) Mobile DNA elements in the generation of diversity and complexity in the brain. Nat Rev Neurosci 15:497–506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC, Lehmann HS, Parker JJ, Atabay KD, Gilmore EC, Poduri A, Park PJ, Walsh CA (2012) Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151:483–496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Evrony GD, Lee E, Park PJ, Walsh CA (2016) Resolving rates of mutation in the brain using single-neuron genomics. elife 5. https://doi.org/10.7554/eLife.12966

  • Faulkner GJ, Garcia-Perez JL (2017) L1 mosaicism in mammals: extent, effects, and evolution. Trends Genet 33:802–816. https://doi.org/10.1016/j.tig.2017.07.004

    Article  PubMed  CAS  Google Scholar 

  • Feng Q, Moran J, Kazazian H, Boeke JD (1996) Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916

    Article  PubMed  CAS  Google Scholar 

  • Furano A (2000) The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Prog Nucleic Acid Res Mol Biol 64:255–294

    Article  PubMed  CAS  Google Scholar 

  • Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, Okwuonu G, Hines S, Lewis L, DeRamo C, Delgado O, Dugan-Rocha S, Miner G, Morgan M, Hawes A, Gill R, Celera, Holt RA, Adams MD, Amanatides PG, Baden-Tillson H, Barnstead M, Chin S, Evans CA, Ferriera S, Fosler C, Glodek A, Gu Z, Jennings D, Kraft CL, Nguyen T, Pfannkoch CM, Sitter C, Sutton GG, Venter JC, Woodage T, Smith D, Lee HM, Gustafson E, Cahill P, Kana A, Doucette-Stamm L, Weinstock K, Fechtel K, Weiss RB, Dunn DM, Green ED, Blakesley RW, Bouffard GG, De Jong PJ, Osoegawa K, Zhu B, Marra M, Schein J, Bosdet I, Fjell C, Jones S, Krzywinski M, Mathewson C, Siddiqui A, Wye N, McPherson J, Zhao S, Fraser CM, Shetty J, Shatsman S, Geer K, Chen Y, Abramzon S, Nierman WC, Havlak PH, Chen R, Durbin KJ, Egan A, Ren Y, Song XZ, Li B, Liu Y, Qin X, Cawley S, Worley KC, Cooney AJ, D'Souza LM, Martin K, Wu JQ, Gonzalez-Garay ML, Jackson AR, Kalafus KJ, McLeod MP, Milosavljevic A, Virk D, Volkov A, Wheeler DA, Zhang Z, Bailey JA, Eichler EE, Tuzun E, Birney E, Mongin E, Ureta-Vidal A, Woodwark C, Zdobnov E, Bork P, Suyama M, Torrents D, Alexandersson M, Trask BJ, Young JM, Huang H, Wang H, Xing H, Daniels S, Gietzen D, Schmidt J, Stevens K, Vitt U, Wingrove J, Camara F, Mar Albà M, Abril JF, Guigo R, Smit A, Dubchak I, Rubin EM, Couronne O, Poliakov A, Hübner N, Ganten D, Goesele C, Hummel O, Kreitler T, Lee YA, Monti J, Schulz H, Zimdahl H, Himmelbauer H, Lehrach H, Jacob HJ, Bromberg S, Gullings-Handley J, Jensen-Seaman MI, Kwitek AE, Lazar J, Pasko D, Tonellato PJ, Twigger S, Ponting CP, Duarte JM, Rice S, Goodstadt L, Beatson SA, Emes RD, Winter EE, Webber C, Brandt P, Nyakatura G, Adetobi M, Chiaromonte F, Elnitski L, Eswara P, Hardison RC, Hou M, Kolbe D, Makova K, Miller W, Nekrutenko A, Riemer C, Schwartz S, Taylor J, Yang S, Zhang Y, Lindpaintner K, Andrews TD, Caccamo M, Clamp M, Clarke L, Curwen V, Durbin R, Eyras E, Searle SM, Cooper GM, Batzoglou S, Brudno M, Sidow A, Stone EA, Venter JC, Payseur BA, Bourque G, López-Otín C, Puente XS, Chakrabarti K, Chatterji S, Dewey C, Pachter L, Bray N, Yap VB, Caspi A, Tesler G, Pevzner PA, Haussler D, Roskin KM, Baertsch R, Clawson H, Furey TS, Hinrichs AS, Karolchik D, Kent WJ, Rosenbloom KR, Trumbower H, Weirauch M, Cooper DN, Stenson PD, Ma B, Brent M, Arumugam M, Shteynberg D, Copley RR, Taylor MS, Riethman H, Mudunuri U, Peterson J, Guyer M, Felsenfeld A, Old S, Mockrin S, Collins F (2004) Rat Genome Sequencing Project Consortium. Genome sequence of the Brown Norway rat yields insights into mammalian evolution Nature 428:493–521

  • Goodier JL (2016) Restricting retrotransposons: a review. Mob DNA 7:16. https://doi.org/10.1186/s13100-016-0070-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Guffanti G, Gaudi S, Klengel T, Fallon JH, Mangalam H, Madduri R, Rodriguez A, DeCrescenzo P, Glovienka E, Sobell J, Klengel C, Pato M, Ressler KJ, Pato C, Macciardi F (2016) LINE1 insertions as a genomic risk factor for schizophrenia: preliminary evidence from an affected family. Am J Med Genet B Neuropsychiatr Genet 171:534–545

    Article  PubMed  CAS  Google Scholar 

  • Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG, Vertino PM, Devine SE (2010) Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141:1253–1261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632

  • Kirilyuk A, Tolstonog GV, Damert A, Held U, Hahn S, Löwer R, Buschmann C, Horn AV, Traub P, Schumann GG (2008) Functional endogenous LINE-1retrotransposons are expressed and mobilized in rat chloroleukemia cells. Nucleic Acids Res 36:648–665

    Article  PubMed  CAS  Google Scholar 

  • Kurnosov AA, Ustyugova SV, Nazarov VI, Minervina AA, Komkov AY, Shugay M, Pogorelyy MV, Khodosevich KV, Mamedov IZ, Lebedev YB (2015) The evidence for increased L1 activity in the site of human adult brain neurogenesis. PLoS One 10:e0117854. https://doi.org/10.1371/journal.pone.0117854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levison SW, Young GM, Goldman JE (1999) Cycling cells in the adult rat neocortex preferentially generate oligodendroglia. J Neurosci Res 57:435–446

    Article  PubMed  CAS  Google Scholar 

  • Li W, Prazak L, Chatterjee N, Gruninger S, Krug L, Theodorou D, Dubnau J (2013) Activation of transposable elements during aging and neuronal decline in Drosophila. Nat Neurosci 16:529–531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu S, Du T, Liu Z, Shen Y, Xiu J, Xu Q (2016) Inverse changes in L1 retrotransposons between blood and brain in major depressive disorder. Sci Rep 6:37530. https://doi.org/10.1038/srep37530

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Macia A, Widmann TJ, Heras SR, Ayllon V, Sanchez L, Benkaddour-Boumzaouad M, Muñoz-Lopez M, Rubio A, Amador-Cubero S, Blanco-Jimenez E, Garcia-Castro J, Menendez P, Ng P, Muotri AR, Goodier JL, Garcia-Perez JL (2017) Engineered LINE-1 retrotransposition in nondividing human neurons. Genome Res 27:335–348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehler MF, Gokhan S (1999) Postnatal cerebral cortical multipotent progenitors: regulatory mechanisms and potential role in the development of novel neural regenerative strategies. Brain Pathol 9:515–526

    Article  PubMed  CAS  Google Scholar 

  • Miousse IR, Chalbot MC, Lumen A, Ferguson A, Kavouras IG, Koturbash I (2015) Response of transposable elements to environmental stressors. Mutat Res Rev Mutat Res 765:19–39

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukherjee S, Sharma D, Upadhyaya KC (2016) L1 retrotransposons are transcriptionally active in hippocampus of rat brain. Prague Med Rep 117:42–53

    Article  PubMed  Google Scholar 

  • Mullaney BC, Johnston MV, Blue M (2004) Developmental expression of methyl-CpG binding protein 2 is dynamically regulated in the rodent brain. Neuroscience 123:939–949

    Article  PubMed  CAS  Google Scholar 

  • Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH (2005) Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–910

    Article  PubMed  CAS  Google Scholar 

  • Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G, Nakashima K, Gage FH (2010) L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538

  • Singh DK, Rath PC (2012) Long interspersed nuclear elements (LINEs) show tissue-specific, mosaic genome and methylation-unrestricted, widespread expression of noncoding RNAs in somatic tissues of the rat. RNA Biol 9:1380–1396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sotelo C (2004) Cellular and genetic regulation of the development of the cerebellar system. Prog Neurobiol 72:295–339

    Article  PubMed  CAS  Google Scholar 

  • Thomas CA, Tejwani L, Trujillo CA, Negraes PD, Herai RH, Mesci P, Macia A, Crow YJ, Muotri AR (2017) Modeling of TREX1-dependent autoimmune disease using human stem cells highlights L1 accumulation as a source of neuroinflammation. Cell Stem Cell 21:319–331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upton KR, Gerhardt DJ, Richardson SR, Sánchez-Luque FJ, Bodea GO, Ewing AD, Salvador-Palomeque C, van der Knaap MS, Brennan PM, Vanderver A, Faulkner GJ (2015) Ubiquitous L1 mosaicism in hippocampal neurons. Cell 161:228–239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wagner JP, Black IB, Di Cicco-Bloom E (1999) Stimulation of neonatal and adult brain neurogenesis by subcutaneous injection of basic fibroblast growth factor. J Neurosci 19:6006–6016

Download references

Funding

This work was supported by RFO (Ricerca Fondamentale Orientata, Oriented Fundamental Research) grants from the University of Bologna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brunella Del Re.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Gianfranco Giorgi and Marco Virgili are co-first authors.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giorgi, G., Virgili, M., Monti, B. et al. Long INterspersed nuclear Elements (LINEs) in brain and non-brain tissues of the rat. Cell Tissue Res 374, 17–24 (2018). https://doi.org/10.1007/s00441-018-2843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-018-2843-9

Keywords

Navigation