Advertisement

Cell and Tissue Research

, Volume 373, Issue 1, pp 297–312 | Cite as

Lateralisation in Parkinson disease

  • P. Riederer
  • K. A. Jellinger
  • P. Kolber
  • G. Hipp
  • J. Sian-Hülsmann
  • R. Krüger
Review

Abstract

Asymmetry of dopaminergic neurodegeneration and subsequent lateralisation of motor symptoms are distinctive features of Parkinson’s disease compared to other forms of neurodegenerative or symptomatic parkinsonism. Even 200 years after the first description of the disease, the underlying causes for this striking clinicopathological feature are not yet fully understood. There is increasing evidence that lateralisation of disease is due to a complex interplay of hereditary and environmental factors that are reflected not only in the concept of dominant hemispheres and handedness but also in specific susceptibilities of neuronal subpopulations within the substantia nigra. As a consequence, not only the obvious lateralisation of motor symptoms occurs but also patterns of associated non-motor signs are defined, which include cognitive functions, sleep behaviour or olfaction. Better understanding of the mechanisms contributing to lateralisation of neurodegeneration and the resulting patterns of clinical phenotypes based on bilateral post-mortem brain analyses and clinical studies focusing on right/left hemispheric symptom origin will help to develop more targeted therapeutic approaches, taking into account subtypes of PD as a heterogeneous disorder.

Keywords

Parkinson’s disease Parkinsonism Asymmetry Lateralisation Dopamine Handedness Genetics 

Abbreviations

ß-amyloid

aPS

atypical Parkinsonian Syndrome

α-Syn

α-synuclein

ß-CIT

iodine-123-(2-carboxymethoxy-3-(4-iodophenyl)tropane)

DASS

depression anxiety stress scales

DSB

definite suicidal behaviour

DA

dopamine

DAT

dopamine transporter

18F-DOPA

fluorine-18-labelled fluorodopa

DTI

Diffusion Tensor Imaging

FDG

fluordesoxyglucose

GBA

glucocerebrosidase

HELP

Help Advance Luxembourg’s Parkinson Research Study

LB

Lewy body

LC

locus coeruleus

LPD

left-dominant Parkinson’s disease

LBD

Lewy body dementia

LOPD

late-onset Parkinson’s disease

LRRK2

leucine-rich repeat kinase 2

MDS

International Parkinson and Movement Disorder Society

MRI

magnetic resonance imaging

MSA

multiple system atrophy

MSA-P

multiple system atrophy-type parkinson

MOCA

Montreal Cognitive Assessment

MPTP

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

NAA

N-acetylaspartate

OB

olfactory bulb

6-OHDA

6-hydroxydopamine

PD

Parkinson’s disease

PDD

Parkinson’s disease with dementia

PSP

progressive supranuclear palsy

PET

positron emission tomography

PFF

preformed fibrils

REM

rapid eye movement

RPD

right-dominant Parkinson’s disease

RN

raphe nucleus

SN

substantia nigra

SNc

substantia nigra pars compacta

SPECT

single-photon-emission computed tomography

TH

tyrosine hydroxylase

UPDRS

United Parkinson’s Disease Rating Scale

YOPD

young-onset Parkinson’s disease

Notes

Acknowledgements

The work of RK, GH and PK was supported by grants from the Luxembourg National Research Fund (FNR) within the National Centre of Excellence in Research on Parkinson’s disease (NCER-PD), the PEARL programme (FNR; FNR/P13/6682797 to RK) and by the European Union’s Horizon2020 research and innovation program under grant agreement No. 692320 (CENTRE-PD to RK).

References

  1. Adams JR, van Netten H, Schulzer M, Mak E, Mckenzie J, Strongosky A, Sossi V, Ruth TJ, Lee CS, Farrer M, Gasser T, Uitti RJ, Calne DB, Wszolek ZK, Stoessl AJ (2005) PET in LRRK2 mutations: comparison to sporadic Parkinson’s disease and evidence for presymptomatic compensation. Brain 128(12):2777–2785  https://doi.org/10.1093/brain/awh607 PubMedCrossRefGoogle Scholar
  2. Amick MM, Grace J, Chou KL (2006) Body side of motor symptom onset in Parkinson’s disease is associated with memory performance. J Int Neuropsychol Soc 12(5):736–740PubMedCrossRefGoogle Scholar
  3. Amtage F, Hellwig S, Kreft A, Spehl T, Glauche V, Winkler C, Rijntjes M, Hellwig B, Weiller C, Weber WA, Tüscher O, Meyer PT (2014) Neuronal correlates of clinical asymmetry in progressive supranuclear palsy. Clin Nucl Med 39:319–325PubMedCrossRefGoogle Scholar
  4. Androulidakis AG, Kühn AA, Chen CC, Blomstedt P, Kempf F, Kupsch A, Schneider GH, Doyle L, Dowsey-Limousin P, Hariz MI, Brown P (2007) Dopaminergic therapy promotes lateralized motor activity in the subthalamic area in Parkinson’s disease. Brain 130(Pt 2):457–468PubMedCrossRefGoogle Scholar
  5. Attems J, Walker L, Jellinger KA (2014) Olfactory bulb involvement in neurodegenerative diseases. Acta Neuropathol 127:459–475PubMedCrossRefGoogle Scholar
  6. Azuma M, Hirai T, Yamada K, Yamashita S, Ando Y, Tateishi M, Iryo Y, Yoneda T, Kitajima M, Wang Y, Yamashita Y (2016) Lateral asymmetry and spatial difference of iron deposition in the substantia nigra of patients with Parkinson disease measured with quantitative susceptibility mapping. AJNR Am J Neuroradiol 37:782–788PubMedPubMedCentralCrossRefGoogle Scholar
  7. Barolin GS, Bernheimer H, Hornykiewicz O (1964) Seitenverschiedenes Verhalten des Dopamins (3-HyHydroxytyramin) im Gehirn eines Falles von Hemiparkinsonismus. Schweizer Archiv für Neurologie undPsychiatrie 94:241Google Scholar
  8. Barrett MJ, Wylie SA, Harrison MB, Wooten GF (2011) Handedness and motor symptom asymmetry in Parkinson’s disease. J Neurol Neurosurg Psychiatry 82:1122–1124PubMedCrossRefGoogle Scholar
  9. Batla A, Stamelou M, Mensikova K, Kaiserova M, Tuckova L, Kanovsky P, Quinn N, Bhatia KP (2013) Markedly asymmetric presentation in multiple system atrophy. Parkinsonism Relat Disord 19:901–905PubMedCrossRefGoogle Scholar
  10. Baumann CR, Held U, Valko PO, Wienecke M, Waldvogel D (2014) Body side and predominant motor features at the onset of Parkinson’s disease are linked to motor and nonmotor progression. Mov Disord 29:207–213PubMedCrossRefGoogle Scholar
  11. Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White Iii CL, Akiyama H, Caviness JN, Shill HA, Sabbagh MN, Walker DG, Arizona Parkinson’s Disease Consortium (2010) Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 119:689–702PubMedPubMedCentralCrossRefGoogle Scholar
  12. Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG (2000) Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord 15:692–698PubMedCrossRefGoogle Scholar
  13. Beretta VS, Gobbi LT, Lirani-Silva E, Simieli L, Orcioli-Silva D, Barbieri FA (2015) Challenging postural tasks increase asymmetry in patients with Parkinson’s disease. PLoS One 10:e0137722PubMedPubMedCentralCrossRefGoogle Scholar
  14. Berg D, Siefker C, Becker G (2001) Echogenicity of the substantia nigra in Parkinson’s disease and its relation to clinical findings. J Neurol 248(8):684–689PubMedCrossRefGoogle Scholar
  15. Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 20:415–455PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bogdanova Y, Cronin-Golomb A (2012) Neurocognitive correlates of apathy and anxiety in Parkinson’s disease. Parkinsons Dis 2012:793076PubMedGoogle Scholar
  17. Bohnen NI, Albin RL, Koeppe RA, Wernette KA, Kilbourn MR, Minoshima S, Frey KA (2006) Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 2006 Sep 26(9):1198–1212PubMedCrossRefGoogle Scholar
  18. Boix J, Padel T, Paul G (2015) A partial lesion model of Parkinson’s disease in mice—characterization of a 6-OHDA-induced medial forebrain bundle lesion. Behav Brain Res 1(284):196–206CrossRefGoogle Scholar
  19. Bortolozzi A, Duffard R, de Duffard AM (2003) Asymmetrical development of the monoamine systems in 2,4-dichlorophenoxyacetic acid treated rats. Neurotoxicology 24(1):149–157PubMedCrossRefGoogle Scholar
  20. Braak H, Del Tredici K (2008) Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 70:1916–1925PubMedCrossRefGoogle Scholar
  21. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  22. Brichta L, Greengard P (2014) Molecular determinants of selective dopaminergic vulnerability in Parkinson’s disease: an update. Front Neuroanat 8:152PubMedPubMedCentralCrossRefGoogle Scholar
  23. Brooks DJ, Pavese N (2009) Recent imaging advances in the diagnosis and management of Parkinson’s disease. Med Rep 1:82Google Scholar
  24. Burbulla LF, Song P, Mazzulli JR, Zampese E, Wong YC, Jeon S, Santos DP, Blanz J, Obermaier CD, Strojny C, Savas JN, Kiskinis E, Zhuang X, Krüger R, Surmeier DJ, Krainc D (2017) Dopamine oxidation mediates mitochondrial and lysosomal dysfunction in Parkinson’s disease. Science 22(357(6357)):1255–1261CrossRefGoogle Scholar
  25. Caligiuri ME, Nisticò R, Arabia G, Morelli M, Novellino F, Salsone M, Barbagallo G, Lupo A, Cascini GL, Galea D, Cherubini A, Quattrone A (2016) Alterations of putaminal shape in de novo Parkinson’s disease. Mov Disord 31:676–683PubMedCrossRefGoogle Scholar
  26. Carriere CH, Kang NH, Niles LP (2017) Bilateral upregulation of alpha-synuclein expression in the mouse substantia nigra by intracranial rotenone treatment. Exp Toxicol Pathol 69:109–114PubMedCrossRefGoogle Scholar
  27. Casey DE (1997) The relationship of pharmacology to side effects. J Clin Psychiatry 58(Suppl 10):55–62PubMedGoogle Scholar
  28. Cheesman AL, Barker RA, Lewis SJ, Robbins TW, Owen AM, Brooks DJ (2005) Lateralisation of striatal function: evidence from 18F-dopa PET in Parkinson’s disease. J Neurol Neurosurg Psychiatry 76:1204–1210PubMedPubMedCentralCrossRefGoogle Scholar
  29. Claassen DO, McDonell KE, Donahue M, Rawal S, Wylie SA, Neimat JS, Kang H, Hedera P, Zald D, Landman B, Dawant B, Rane S (2016) Cortical asymmetry in Parkinson’s disease: early susceptibility of the left hemisphere. Brain Behav 6:1–10 e00573CrossRefGoogle Scholar
  30. Colloby SJ, McParland S, O'Brien JT, Attems J (2012) Neuropathological correlates of dopaminergic imaging in Alzheimer’s disease and Lewy body dementias. Brain 135:2798–2808PubMedCrossRefGoogle Scholar
  31. Colosimo C, Martínez-Martín P, Fabbrini G, Hauser RA, Merello M, Miyasaki J, Poewe W, Sampaio C, Rascol O, Stebbins GT, Schrag A, Goetz CG (2010) Task force report on scales to assess dyskinesia in Parkinson’s disease: critique and recommendations. Mov Disord 15(25(9)):1131–1142CrossRefGoogle Scholar
  32. Counihan TJ, Penney JB Jr (1998) Regional dopamine transporter gene expression in the substantia nigra from control and Parkinson’s disease brains. J Neurol Neurosurg Psychiatry 65:164–169PubMedPubMedCentralCrossRefGoogle Scholar
  33. Cubo E, Martín PM, Martin-Gonzalez JA, Rodríguez-Blázquez C, Kulisevsky J, ELEP Group Members (2010) Motor laterality asymmetry and nonmotor symptoms in Parkinson’s disease. Mov Disord 25:70–75PubMedCrossRefGoogle Scholar
  34. Dale RC, Church AJ, Surtees RA, Lees AJ, Adcock JE, Harding B, Neville BG, Giovannoni G (2004) Encephalitis lethargica syndrome: 20 new cases and evidence of basal ganglia autoimmunity. Brain 127:21–33PubMedCrossRefGoogle Scholar
  35. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122(Pt 8):1437–1448PubMedCrossRefGoogle Scholar
  36. de la Fuente-Fernández R, Kishore A, Calne DB, Ruth TJ, Stoessl AJ (2000) Nigrostriatal dopamine system and motor lateralization. Behav Brain Res 112:63–68PubMedCrossRefGoogle Scholar
  37. Dethy S, Van Blercom N, Damhaut P, Wikler D, Hildebrand J, Goldman S (1998) Asymmetry of basal ganglia glucose metabolism and dopa responsiveness in parkinsonism. Mov Disord 13:275–280PubMedCrossRefGoogle Scholar
  38. Dijkstra AA, Voorn P, Berendse HW, Groenewegen HJ, Netherlands Brain Bank, Rozemuller AJ, van de Berg WD (2014) Stage-dependent nigral neuronal loss in incidental Lewy body and Parkinson’s disease. Mov Disord 29:1244–1251PubMedCrossRefGoogle Scholar
  39. Direnfeld LK, Albert ML, Volicer L, Langlais PJ, Marquis J, Kaplan E (1984) Parkinson’s disease. The possible relationship of laterality to dementia and neurochemical findings. Arch Neurol 41:935–941PubMedCrossRefGoogle Scholar
  40. Djaldetti R, Ziv I, Melamed E (2006) The mystery of motor asymmetry in Parkinson’s disease. Lancet Neurol 5:796–802PubMedCrossRefGoogle Scholar
  41. Djaldetti R, Lorberboym M, Karmon Y, Treves TA, Ziv I, Melamed E (2011) Residual striatal dopaminergic nerve terminals in very long-standing Parkinson's disease: a single photon emission computed tomography imaging study. Mov Disord 26:327–330PubMedCrossRefGoogle Scholar
  42. Doherty KM, Silveira-Moriyama L, Parkkinen L, Healy DG, Farrell M, Mencacci NE, Ahmed Z, Brett FM, Hardy J, Quinn N, Counihan TJ, Lynch T, Fox ZV, Revesz T, Lees AJ, Holton JL (2013) Parkin disease: a clinicopathologic entity? JAMA Neurol 70:571–579PubMedPubMedCentralCrossRefGoogle Scholar
  43. Donadio V, Incensi A, Rizzo G, Scaglione C, Capellari S, Fileccia E, Avoni P, Liguori R (2017) Spine topographical distribution of skin α-synuclein deposits in idiopathic Parkinson disease. J Neuropathol Exp Neurol 76(5):384–389PubMedCrossRefGoogle Scholar
  44. Doty RL, Stern MB, Pfeiffer C, Gollomp SM, Hurtig HI (1992) Bilateral olfactory dysfunction in early stage treated and untreated idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 55:138–142PubMedPubMedCentralCrossRefGoogle Scholar
  45. Durmaz NF, Yorubulut M, Akbostanci CM (2016) May substantia nigra volume asymmetry be an indicator of motor asymmetry in Parkinson’s disease? A retrospective analysis (abstract). Mov Disord 31(suppl 2):1204Google Scholar
  46. Dziadkiewicz A, Białecka M, Janik P, Sławek J (2013) Hemiparkinsonism-hemiatrophy syndrome—report on two cases and review of the literature. Neurol Neurochir Pol 47(4):387–392  https://doi.org/10.5114/ninp.2013.34557 PubMedGoogle Scholar
  47. Erro R, Barone P, Vicidomini C, Picillo M, Pappatà S (2013) Patients with Parkinson’s disease and scans with (predominant) ipsilateral dopaminergic deficit. J Neurol 260:2405–2406PubMedCrossRefGoogle Scholar
  48. Erro R, Spina E, Barone P, Pellecchia MT (2015) On the relationship between side of onset and cognition in Parkinson disease. Parkinsonism Relat Disord 21:1391–1392PubMedCrossRefGoogle Scholar
  49. Espay AJ, Henderson KK (2011) Postencephalitic parkinsonism and basal ganglia necrosis due to Epstein-Barr virus infection. Neurology 26(76(17)):1529–1530CrossRefGoogle Scholar
  50. Fabricius K, Barkholt P, Jelsing J, Hansen HH (2017) Application of the physical disector principle for quantification of dopaminergic neuronal loss in a rat 6-hydroxydopamine nigral lesion model of Parkinson’s disease. Front Neuroanat 11:109PubMedPubMedCentralCrossRefGoogle Scholar
  51. Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114(Pt 5):2283–2301PubMedCrossRefGoogle Scholar
  52. Foster ER, Black KJ, Antenor-Dorsey JA, Perlmutter JS, Hershey T (2008) Motor asymmetry and substantia nigra volume are related to spatial delayed response performance in Parkinson disease. Brain Cogn 67:1–10PubMedCrossRefGoogle Scholar
  53. Foster PS, Drago V, Skidmore F, Skoblar BM, Crucian GP, Heilman KM (2009) Greater motor improvement in right hemibody Parkinson’s patients after dopaminergic medications. Parkinsonism Relat Disord 15:20–23PubMedCrossRefGoogle Scholar
  54. Francks C (2011) Leucine-rich repeat genes and the fine-tuning of synapses. Biol Psychiatry 69(9):820–821.  https://doi.org/10.1016/j.biopsych.2010.12.018 PubMedCrossRefGoogle Scholar
  55. Francks C (2015) Exploring human brain lateralization with molecular genetics and genomics. Ann N Y Acad Sci 1359(1):1–13.  https://doi.org/10.1111/nyas.12770 PubMedCrossRefGoogle Scholar
  56. Frazzitta G, Pezzoli G, Bertotti G, Maestri R (2013) Asymmetry and freezing of gait in parkinsonian patients. J Neurol 260:71–76PubMedCrossRefGoogle Scholar
  57. German DC, Manaye K, Smith WK, Woodward DJ, Saper CB (1989) Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol 26:507–514PubMedCrossRefGoogle Scholar
  58. Glick SD, Ross DA, Hough LB (1982) Lateral asymmetry of neurotransmitters in human brain. Brain Res 234:53–63PubMedCrossRefGoogle Scholar
  59. Gómez-Esteban JC, Tijero B, Ciordia R, Berganzo K, Somme J, Lezcano E, Zarranz JJ (2010) Factors influencing the symmetry of Parkinson’s disease symptoms. Clin Neurol Neurosurg 112:302–305PubMedCrossRefGoogle Scholar
  60. Gomperts SN, Locascio JJ et al (2016) Tau positron emission tomographic imaging in the Lewy body diseases. JAMA Neurol 73:1334–1341PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gorell JM, Ordidge RJ, Brown GG, Deniau JC, Buderer NM, Helpern JA (1995) Increased iron-related MRI contrast in the substantia nigra in Parkinson’s disease. Neurology 45:1138–1143PubMedCrossRefGoogle Scholar
  62. Grealish S, Mattsson B, Draxler P, Björklund A (2010) Characterisation of behavioural and neurodegenerative changes induced by intranigral 6-hydroxydopamine lesions in a mouse model of Parkinson’s disease. Eur J Neurosci 31(12):2266–2278PubMedCrossRefGoogle Scholar
  63. Halliday G, Murphy K (2010) Pathology of Parkinson’s disease—an overview. In: AHV S, AET L et al (eds) Movement disorders, vol 4. Saunders-Elsevier, pp 132–154Google Scholar
  64. Ham JH, Lee JJ, Kim JS, Lee PH, Sohn YH (2015) Is dominant-side onset associated with a better motor compensation in Parkinson’s disease? Mov Disord 30:1921–1925PubMedCrossRefGoogle Scholar
  65. Hanna-Pladdy B, Pahwa R, Lyons KE (2015) Paradoxical effect of dopamine medication on cognition in Parkinson’s disease: relationship to side of motor onset. J Int Neuropsychol Soc 21(4):259–270PubMedPubMedCentralCrossRefGoogle Scholar
  66. Hansen AK, Knudsen K, Lillethorup TP, Landau AM, Parbo P, Fedorova T, Audrain H, Bender D, Østergaard K, Brooks DJ, Borghammer P (2016) In vivo imaging of neuromelanin in Parkinson’s disease using 18F-AV-1451 PET. Brain 139:2039–2049PubMedCrossRefGoogle Scholar
  67. Hassler R (1938) Zur Pathologie der Paralysis agitains und des postenzephalitischen Parkinsonismus. J Psychol Neurol 48:387–476Google Scholar
  68. Heckmann JG, Höcherl C, Lang C, Platsch G, Hummel T (2004) Hemihyposmia in a case of hemiparkinsonism. Eur J Gen Med 1:72–73CrossRefGoogle Scholar
  69. Heinrichs-Graham E, Santamaria PM, Gendelman HE, Wilson TW (2017) The cortical signature of symptom laterality in Parkinson’s disease. Neuroimage Clin 14:433–440PubMedPubMedCentralCrossRefGoogle Scholar
  70. Hepper PG, McCartney GR, Shannon EA (1998) Lateralised behaviour in first trimester human foetuses. Neuropsychologia 36(6):531–534.  https://doi.org/10.1016/S0028-3932(97)00156-5 PubMedCrossRefGoogle Scholar
  71. Hershey T, Wu J, Weaver PM, Perantie DC, Karimi M, Tabbal SD, Perlmutter JS (2008) Unilateral vs. bilateral STN DBS effects on working memory and motor function in Parkinson disease. Exp Neurol 210(2):402–408PubMedCrossRefGoogle Scholar
  72. Hilker R, Klein C, Ghaemi M, Kis B, Strotmann T, Ozelius LJ, Lenz O, Vieregge P, Herholz K, Heiss WD, Pramstaller PP (2001) Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol 49(3):367–376.  https://doi.org/10.1002/ana.74 PubMedCrossRefGoogle Scholar
  73. Hipp G (2015) Das Luxemburger Parkinson-Kohortenprogramm: Neue Strategien für eine umfassende Studie zur Erfassung von Biodaten und klinischen Daten. Basal ganglia [internet]. Elsevier 5(1):XVIGoogle Scholar
  74. Hobson DE (2012) Asymmetry in parkinsonism, spreading pathogens and the nose. Parkinsonism Relat Disord 18(1):1–9PubMedCrossRefGoogle Scholar
  75. Hoshiyama E, Kadowaki T et al (2015) The decreasing of dopamine-transporter uptake on the right ipsilateral side of tremor in a patient with Parkinson’s disease [abstract]. Mov Disord 30(Suppl 1):996Google Scholar
  76. Houlden H, Singleton AB (2012) The genetics and neuropathology of Parkinson’s disease. Acta Neuropathol 124:325–338PubMedPubMedCentralCrossRefGoogle Scholar
  77. Huang P, Tan YY, Liu DQ, Herzallah MM, Lapidow E, Wang Y, Zang YF, Gluck MA, Chen SD (2017) Motor-symptom laterality affects acquisition in Parkinson’s disease: a cognitive and functional magnetic resonance imaging study. Mov Disord 32:1047–1055PubMedCrossRefGoogle Scholar
  78. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184PubMedPubMedCentralCrossRefGoogle Scholar
  79. Hwang I, Sohn CH, Kang KM, Jeon BS, Kim HJ, Choi SH, Yun TJ, Kim JH (2015) Differentiation of parkinsonism-predominant multiple system atrophy from idiopathic Parkinson disease using 3T susceptibility-weighted MR imaging, focusing on putaminal change and lesion asymmetry. AJNR Am J Neuroradiol 36:2227–2234PubMedCrossRefGoogle Scholar
  80. Jellinger KA (2012) Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov Disord 27:8–30PubMedCrossRefGoogle Scholar
  81. Jellinger KA (2014) Neuropathology of Parkinson’s disease. In: Thomas M (ed) Inflammation in Parkinson’s disease: scientific and clinical aspects. Springer International Publishing, Switzerland, pp 25–74Google Scholar
  82. Jung KY, Chung CS, Park KW (2007) Bilateral medial temporal lesions in Japanese encephalitis. Neurology 17(68(16)):1319CrossRefGoogle Scholar
  83. Kaasinen V (2015) Ipsilateral deficits of dopaminergic neurotransmission in Parkinson’s disease. Ann Clin Transl Neurol 3:21–26PubMedPubMedCentralCrossRefGoogle Scholar
  84. Karlebach G, Francks C (2015) Lateralization of gene expression in human language cortex. Cortex 67:30–36.  https://doi.org/10.1016/j.cortex.2015.03.003 PubMedCrossRefGoogle Scholar
  85. Kempster PA, Gibb WR, Stern GM, Lees AJ (1989) Asymmetry of substantia nigra neuronal loss in Parkinson’s disease and its relevance to the mechanism of levodopa related motor fluctuations. J Neurol Neurosurg Psychiatry 52:72–76PubMedPubMedCentralCrossRefGoogle Scholar
  86. Kiely AP, Ling H, Asi YT, Kara E, Proukakis C, Schapira AH, Morris HR, Roberts HC, Lubbe S, Limousin P, Lewis PA, Lees AJ, Quinn N, Hardy J, Love S, Revesz T, Houlden H, Holton JL (2015) Distinct clinical and neuropathological features of G51D SNCA mutation cases compared with SNCA duplication and H50Q mutation. Mol Neurodegener 10:41PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kim JS, Yang JJ, Lee JM, Youn J, Kim JM, Cho JW4 (2014) Topographic pattern of cortical thinning with consideration of motor laterality in Parkinson disease. Parkinsonism Relat Disord 20:1186–1190PubMedCrossRefGoogle Scholar
  88. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880PubMedCrossRefGoogle Scholar
  89. Klawans HL Jr (1972) Relationship between handedness and side of onset of parkinsonism. Lancet 15(1(7755)):850CrossRefGoogle Scholar
  90. Knudsen GM, Karlsborg M, Thomsen G, Krabbe K, Regeur L, Nygaard T, Videbaek C, Werdelin L (2004) Imaging of dopamine transporters and D2 receptors in patients with Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 31:1631–1638PubMedCrossRefGoogle Scholar
  91. Kojovic M et al (2012) Functional reorganization of sensorimotor cortex in early Parkinson disease. Neurology 78:1441–1448PubMedPubMedCentralCrossRefGoogle Scholar
  92. Kordower JH, Olanow CW, Dodiya HB, Chu Y, Beach TG, Adler CH, Halliday GM, Bartus RT (2013) Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain 136:2419–2431PubMedPubMedCentralCrossRefGoogle Scholar
  93. Kovacs GG, Milenkovic IJ, Preusser M, Budka H (2008) Nigral burden of alpha-synuclein correlates with striatal dopamine deficit. Mov Disord 23:1608–1612PubMedCrossRefGoogle Scholar
  94. Kraemmer J, Kovacs GG, Perju-Dumbrava L, Pirker S, Traub-Weidinger T, Pirker W (2014) Correlation of striatal dopamine transporter imaging with post mortem substantia nigra cell counts. Mov Disord 29:1767–1773PubMedCrossRefGoogle Scholar
  95. Krüger R, Kuhn W, Leenders KL, Sprengelmeyer R, Müller T, Woitalla D, Portman AT, Maguire RP, Veenma L, Schröder U, Schöls L, Epplen JT, Riess O, Przuntek H (2001) Familial parkinsonism with synuclein pathology: Clinical and PET studies of A30P mutation carriers. Neurology 56(10):1355–1362.  https://doi.org/10.1212/WNL.56.10.1355 PubMedCrossRefGoogle Scholar
  96. Kumakura Y, Gjedde A, Danielsen EH, Christensen S, Cumming P (2006) Dopamine storage capacity in caudate and putamen of patients with early Parkinson’s disease: correlation with asymmetry of motor symptoms. J Cereb Blood Flow Metab 26:358–370PubMedCrossRefGoogle Scholar
  97. Kumar S, Mandal MK (2003) Task-specific motor performance and musculoskeletal response in self-classified right handers. Int J Neurosci 113(11):1487–1495PubMedCrossRefGoogle Scholar
  98. Kumar A, Mann S et al (2003) [11C]DTBZ-PET correlates of levodopa responses in asymmetric Parkinson’s disease. Brain 126:2648–2655PubMedCrossRefGoogle Scholar
  99. Kwon DH, Kim JM, Oh SH, Jeong HJ, Park SY, Oh ES, Chi JG, Kim YB, Jeon BS, Cho ZH (2012) Seven-Tesla magnetic resonance images of the substantia nigra in Parkinson disease. Ann Neurol 71:267–277PubMedCrossRefGoogle Scholar
  100. Laihinen A, Ruottinen H, Rinne JO, Haaparanta M, Bergman J, Solin O, Koskenvuo M, Marttila R, Rinne UK (2000) Risk for Parkinson’s disease: twin studies for the detection of asymptomatic subjects using [18F]6-fluorodopa PET. J Neurol 247(Suppl 2):II110–II113PubMedGoogle Scholar
  101. Larsen SB, Hanss Z, Krüger R (2018) The genetic architecture of mitochondrial dysfunction in Parkinson's disease. Cell Tissue Res.  https://doi.org/10.1007/s00441-017-2768-8
  102. Lee EY, Sen S, Eslinger PJ, Wagner D, Kong L, Lewis MM, Du G, Huang X (2015) Side of motor onset is associated with hemisphere-specific memory decline and lateralized gray matter loss in Parkinson’s disease. Parkinsonism Relat Disord 21:465–470PubMedPubMedCentralCrossRefGoogle Scholar
  103. Lee SH, Cho H, Choi JY, Lee JH, Ryu YH, Lee MS, Lyoo CH (2018) Distinct patterns of amyloid-dependent tau accumulation in Lewy body diseases. Mov Disord 33:262–272PubMedCrossRefGoogle Scholar
  104. Leenders KL, Salmon EP, Tyrrell P, Perani D, Brooks DJ, Sager H, Jones T, Marsden CD, Frackowiak RS (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47(12):1290–1298PubMedCrossRefGoogle Scholar
  105. Leh SE, Petrides M, Strafella AP (2010) The neural circuitry of executive functions in healthy subjects and Parkinson’s disease. Neuropsychopharmacology. 2010 Jan 35(1):70–85PubMedCrossRefGoogle Scholar
  106. Lehéricy S, Bardinet E, Poupon C, Vidailhet M, François C (2014) 7 Tesla magnetic resonance imaging: a closer look at substantia nigra anatomy in Parkinson’s disease. Mov Disord 29:1574–1581PubMedCrossRefGoogle Scholar
  107. Lenfeldt N, Larsson A, Nyberg L, Birgander R, Forsgren L (2015) Fractional anisotropy in the substantia nigra in Parkinson’s disease: a complex picture. Eur J Neurol 22:1408–1414PubMedCrossRefGoogle Scholar
  108. Li J, Gu CZ, Su JB, Zhu LH, Zhou Y, Huang HY, Liu CF (2016) Changes in olfactory bulb volume in Parkinson’s disease: a systematic review and meta-analysis. PLoS One 22:11(2)Google Scholar
  109. Lill CM (2016) Genetics of Parkinson’s disease. Mol Cell Probes 30(6):386–396.  https://doi.org/10.1016/j.mcp.2016.11.001 PubMedCrossRefGoogle Scholar
  110. Liu SY, Wu JJ, Zhao J, Huang SF, Wang YX, Ge JJ, Wu P, Zuo CT, Ding ZT, Wang J (2015) Onset-related subtypes of Parkinson’s disease differ in the patterns of striatal dopaminergic dysfunction: a positron emission tomography study. Parkinsonism Relat Disord 21:1448–1453PubMedCrossRefGoogle Scholar
  111. Lizbinski KM, Dacks AM (2018) Intrinsic and extrinsic neuromodulation of olfactory processing. Front Cell Neurosci 9(11):424CrossRefGoogle Scholar
  112. Lohmann E, Periquet M et al (2003a) How much phenotypic variation can be attributed to parkin genotype? Ann Neurol 54:176–185PubMedCrossRefGoogle Scholar
  113. Lohmann E, Periquet M, Bonifati V, Wood NW, De Michele G, Bonnet AM, Fraix V, Broussolle E, Horstink MW, Vidailhet M, Verpillat P, Gasser T, Nicholl D, Teive H, Raskin S, Rascol O, Destée A, Ruberg M, Gasparini F, Meco G, Agid Y, Durr A, Brice A, French Parkinson’s Disease Genetics Study Group; European Consortium on Genetic Susceptibility in Parkinson’s Disease (2003b) How much phenotypic variation can be attributed to parkin genotype? Ann Neurol 54(2):176–185.  https://doi.org/10.1002/ana.10613 PubMedCrossRefGoogle Scholar
  114. Lowe VJ, Curran G, Fang P, Liesinger AM, Josephs KA, Parisi JE Kantarci K, Boeve BF, Pandey MK, Bruinsma T, Knopman DS, Jones DT, Petrucelli L, Cook CN, Graff-Radford NR, Dickson DW, Petersen RC, Jack CR Jr, Murray ME (2016) An autoradiographic evaluation of AV-1451 Tau PET in dementia. Acta Neuropathol Commun 4:58PubMedPubMedCentralCrossRefGoogle Scholar
  115. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461(7265):747–753.  https://doi.org/10.1038/nature08494 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Marek KL, Seibyl JP, Zoghbi SS, Zea-Ponce Y, Baldwin RM, Fussell B, Charney DS, van Dyck C, Hoffer PB, Innis RP (1996) [123I] beta-CIT/SPECT imaging demonstrates bilateral loss of dopamine transporters in hemi-Parkinson’s disease. Neurology 46:231–237PubMedCrossRefGoogle Scholar
  117. Margeta MA, Shen K (2010) Molecular mechanisms of synaptic specificity. Mol Cell Neurosci 43(3):261–267.  https://doi.org/10.1016/j.mcn.2009.11.009 PubMedCrossRefGoogle Scholar
  118. Marinelli L, Piccardo A, Mori L, Morbelli S, Girtler N, Castaldi A, Picco A, Trompetto C, Ghilardi MF, Abbruzzese G, Nobili F (2015) Orbitofrontal (18) F-DOPA uptake and movement preparation in Parkinson’s disease. Parkinsons Dis 2015:180940PubMedPubMedCentralGoogle Scholar
  119. Marquié M, Normandin MD, Vanderburg CR, Costantino IM, Bien EA, Rycyna LG, Klunk WE, Mathis CA, Ikonomovic MD, Debnath ML, Vasdev N, Dickerson BC, Gomperts SN, Growdon JH, Johnson KA, Frosch MP, Hyman BT, Gómez-Isla T (2015) Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue. Ann Neurol 78:787–800PubMedPubMedCentralCrossRefGoogle Scholar
  120. Martinu K, Nagano-Saito A, Fogel S, Monchi O (2014) Asymmetrical effect of levodopa on the neural activity of motor regions in PD. PLoS One 9:e111600PubMedPubMedCentralCrossRefGoogle Scholar
  121. Mattock C, Marmot M, Stern G (1988) Could Parkinson’s disease follow intra-uterine influenza?: a speculative hypothesis. J Neurol Neurosurg Psychiatry 51(6):753–756PubMedPubMedCentralCrossRefGoogle Scholar
  122. McNeill A, Wu RM, Tzen KY, Aguiar PC, Arbelo JM, Barone P, Bhatia K, Barsottini O, Bonifati V, Bostantjopoulou S, Bressan R, Cossu G, Cortelli P, Felicio A, Ferraz HB, Herrera J, Houlden H, Hoexter M, Isla C, Lees A, Lorenzo-Betancor O, Mencacci NE, Pastor P, Pappata S, Pellecchia MT, Silveria-Moriyama L, Varrone A, Foltynie T, Schapira AH (2013) Dopaminergic neuronal imaging in genetic Parkinson’s disease: insights into pathogenesis. PLoS One 8:e69190PubMedPubMedCentralCrossRefGoogle Scholar
  123. Minkova L, Habich A, Peter J, Kaller CP, Eickhoff SB, Klöppel S (2017) Gray matter asymmetries in aging and neurodegeneration: a review and meta-analysis. Hum Brain Mapp 38:5890–5904PubMedCrossRefGoogle Scholar
  124. Mirabella G, Fragola M, Giannini G, Modugno N, Lakens D (2017) Inhibitory control is not lateralized in Parkinson’s patients. Neuropsychologia 102:177–189PubMedCrossRefGoogle Scholar
  125. Modestino EJ, Amenechi C, Reinhofer A, O'Toole P (2017) Side-of-onset of Parkinson’s disease in relation to neuropsychological measures. Brain Behav 19:7(1)Google Scholar
  126. Moessnang C, Frank G, Bogdahn U, Winkler J, Greenlee MW, Klucken J (2011) Altered activation patterns within the olfactory network in Parkinson’s disease. Cereb Cortex 21:1246–1253PubMedCrossRefGoogle Scholar
  127. Monnot C, Zhang X, Nikkhou-Aski S, Damberg P, Svenningsson P (2017) Asymmetric dopaminergic degeneration and levodopa alter functional corticostriatal connectivity bilaterally in experimental parkinsonism. Exp Neurol 292:11–20PubMedPubMedCentralCrossRefGoogle Scholar
  128. Munhoz RP, Espay AJ, Morgante F, Li JY, Teive HA, Dunn E, Gallin E, Litvan I (2013) Long-duration Parkinson’s disease: role of lateralization of motor features. Parkinsonism Relat Disord 19:77–80PubMedCrossRefGoogle Scholar
  129. Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M, DeStefano AL, Kara E, Bras J, Sharma M, Schulte C, Keller MF, Arepalli S, Letson C, Edsall C, Stefansson H, Liu X, Pliner H, Lee JH, Cheng R, International Parkinson's Disease Genomics Consortium (IPDGC), Parkinson's Study Group (PSG) Parkinson's Research: The Organized GENetics Initiative (PROGENI), 23andMe, GenePD, NeuroGenetics Research Consortium (NGRC), Hussman Institute of Human Genomics (HIHG), Ashkenazi Jewish Dataset Investigator, Cohorts for Health and Aging Research in Genetic Epidemiology (CHARGE), North American Brain Expression Consortium (NABEC), United Kingdom Brain Expression Consortium (UKBEC), Greek Parkinson's Disease Consortium, Alzheimer Genetic Analysis Group, Ikram MA, Ioannidis JP, Hadjigeorgiou GM, Bis JC, Martinez M, Perlmutter JS, Goate A, Marder K, Fiske B, Sutherland M, Xiromerisiou G, Myers RH, Clark LN, Stefansson K, Hardy JA, Heutink P, Chen H, Wood NW, Houlden H, Payami H, Brice A, Scott WK, Gasser T, Bertram L, Eriksson N, Foroud T, Singleton AB (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993.  https://doi.org/10.1038/ng.3043 PubMedPubMedCentralCrossRefGoogle Scholar
  130. Nandhagopal R, Mak E, Schulzer M, McKenzie J, McCormick S, Sossi V, Ruth TJ, Strongosky A, Farrer MJ, Wszolek ZK, Stoessl AJ (2008) Progression of dopaminergic dysfunction in a LRRK2 kindred: a multitracer PET study. Neurology 71(22):1790–1795.  https://doi.org/10.1212/01.wnl.0000335973.66333.58 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Nandhagopal R, Kuramoto L, Schulzer M, Mak E, Cragg J, Lee CS, McKenzie J, McCormick S, Samii A, Troiano A, Ruth TJ, Sossi V, de la Fuente-Fernandez R, Calne DB, Stoessl AJ (2009) Longitudinal progression of sporadic Parkinson’s disease: a multi-tracer positron emission tomography study. Brain 132:2970–2979PubMedCrossRefGoogle Scholar
  132. Nestrasil I, Michaeli S, Liimatainen T, Rydeen CE, Kotz CM, Nixon JP, Hanson T, Tuite PJ (2010) T1rho and T2rho MRI in the evaluation of Parkinson’s disease. J Neurol 257:964–968PubMedPubMedCentralCrossRefGoogle Scholar
  133. Neumann J, Bras J, Deas E, O'Sullivan SS, Parkkinen L, Lachmann RH, Li A, Holton J, Guerreiro R, Paudel R, Segarane B, Singleton A, Lees A, Hardy J, Houlden H, Revesz T, Wood NW (2009) Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain 132:1783–1794PubMedPubMedCentralCrossRefGoogle Scholar
  134. Noh Y, Sung YH, Lee J, Kim EY (2015) Nigrosome 1 detection at 3T MRI for the diagnosis of early-stage idiopathic Parkinson disease: assessment of diagnostic accuracy and agreement on imaging asymmetry and clinical laterality. AJNR Am J Neuroradiol 36:2010–2016PubMedCrossRefGoogle Scholar
  135. Pakkenberg B, Møller A, Gundersen HJ, Mouritzen Dam A, Pakkenberg H (1991) The absolute number of nerve cells in substantia nigra in normal subjects and in patients with Parkinson’s disease estimated with an unbiased stereological method. J Neurol Neurosurg Psychiatry 54:30–33PubMedPubMedCentralCrossRefGoogle Scholar
  136. Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, Jackson S, Gille G, Spillantini MG, Reichmann H, Funk RH (2010) Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5:e8762PubMedPubMedCentralCrossRefGoogle Scholar
  137. Park JW, Kwon DY, Choi JH, Park MH, Yoon HK (2018) Olfactory dysfunctions in drug-naïve Parkinson’s disease with mild cognitive impairment. Parkinsonism Relat Disord 46:69–73PubMedCrossRefGoogle Scholar
  138. Pellicano C, Assogna F, Cravello L, Langella R, Caltagirone C, Spalletta G, Pontieri FE (2015) Neuropsychiatric and cognitive symptoms and body side of onset of parkinsonism in unmedicated Parkinson’s disease patients. Parkinsonism Relat Disord 21(9):1096–1100PubMedCrossRefGoogle Scholar
  139. Péran P, Cherubini A, Assogna F, Piras F, Quattrocchi C, Peppe A, Celsis P, Rascol O, Démonet JF, Stefani A, Pierantozzi M, Pontieri FE, Caltagirone C, Spalletta G, Sabatini U (2010) Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain 133:3423–3433PubMedCrossRefGoogle Scholar
  140. Perju-Dumbrava LD, Kovacs GG, Pirker S, Jellinger K, Hoffmann M, Asenbaum S, Pirker W (2012) Dopamine transporter imaging in autopsy-confirmed Parkinson’s disease and multiple system atrophy. Mov Disord 27:65–71PubMedCrossRefGoogle Scholar
  141. Perlmutter JS, Norris SA (2014) Neuroimaging biomarkers for Parkinson disease: facts and fantasy. Ann Neurol 76:769–783PubMedPubMedCentralCrossRefGoogle Scholar
  142. Picard F, de Saint-Martin A, Salmon E, Hirsch E, Marescaux C (1996) Postencephalitic stereotyped involuntary movements responsive to l-dopa. Mov Disord 11(5):567–570PubMedCrossRefGoogle Scholar
  143. Poletti M, Frosini D, Pagni C, Baldacci F, Giuntini M, Mazzucchi S, Tognoni G, Lucetti C, Del Dotto P, Ceravolo R, Bonuccelli U (2013) The relationship between motor symptom lateralization and cognitive performance in newly diagnosed drug-naive patients with Parkinson’s disease. J Clin Exp Neuropsychol 35:124–131PubMedCrossRefGoogle Scholar
  144. Prakash BD, Sitoh YY, Tan LC, Au WL (2012) Asymmetrical diffusion tensor imaging indices of the rostral substantia nigra in Parkinson’s disease. Parkinsonism Relat Disord 18:1029–1033PubMedCrossRefGoogle Scholar
  145. Pramstaller PP, Künig G, Leenders K, Kann M, Hedrich K, Vieregge P, Goetz CG, Klein C (2002) Parkin mutations in a patient with hemiparkinsonism-hemiatrophy: a clinical-genetic and PET study. Neurology 58(5):808–810 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11889248 PubMedCrossRefGoogle Scholar
  146. Prasad S, Stezin A, Lenka A, George L, Saini J, Yadav R, Pal PK (2018) Three-dimensional neuromelanin sensitive magnetic resonance imaging of the substantia nigra in Parkinson's disease. Eur J Neurol 25(4):680–686.  https://doi.org/10.1111/ene.13573
  147. Rey NL, Steiner JA, Maroof N, Luk KC, Madaj Z, Trojanowski JQ, Lee VM, Brundin P (2016) Widespread transneuronal propagation of alpha-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J Exp Med 213:1759–1778PubMedPubMedCentralCrossRefGoogle Scholar
  148. Riederer P, Sian-Hülsmann J (2012) The significance of neuronal lateralisation in Parkinson’s disease. J Neural Transm (Vienna) 119:953–962CrossRefGoogle Scholar
  149. Rinne JO, Laihinen A, Rinne UK, Någren K, Bergman J, Ruotsalainen U (1993) PET study on striatal dopamine D2 receptor changes during the progression of early Parkinson’s disease. Mov Disord 8:134–138PubMedCrossRefGoogle Scholar
  150. Rissanen E, Paavilainen T, Virta J, Marttila RJ, Rinne JO, Airas L (2010) Carbon monoxide poisoning-induced nigrostriatal dopaminergic dysfunction detected using positron emission tomography (PET). Neurotoxicology 31(4):403–407PubMedCrossRefGoogle Scholar
  151. Rolinski M, Griffanti L, Piccini P, Roussakis AA, Szewczyk-Krolikowski K, Menke RA, Quinnell T, Zaiwalla Z, Klein JC, Mackay CE, Hu MT (2016) Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease. Brain 139:2224–2234PubMedPubMedCentralCrossRefGoogle Scholar
  152. Rudow G, O'Brien R, Savonenko AV, Resnick SM, Zonderman AB, Pletnikova O, Marsh L, Dawson TM, Crain BJ, West MJ, Troncoso JC (2008) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol 115:461–470PubMedPubMedCentralCrossRefGoogle Scholar
  153. Santos MC, Campos LS, Guimarães RP, Piccinin CC, Azevedo PC, Piovesana LG, De Campos BM, Scarparo Amato-Filho AC, Cendes F, D’Abreu A (2016) Does side of onset influence the pattern of cerebral atrophy in Parkinson’s disease? Front Neurol 7:145PubMedPubMedCentralCrossRefGoogle Scholar
  154. Schendan HE, Amick MM, Cronin-Golomb A (2009) Role of a lateralized parietal-basal ganglia circuit in hierarchical pattern perception: evidence from Parkinson’s disease. Behav Neurosci 123(1):125–136PubMedPubMedCentralCrossRefGoogle Scholar
  155. Scherfler C, Seppi K, Mair KJ, Donnemiller E, Virgolini I, Wenning GK, Poewe W (2012) Left hemispheric predominance of nigrostriatal dysfunction in Parkinson’s disease. Brain 135:3348–3354PubMedCrossRefGoogle Scholar
  156. Schiesling C, Kieper N, Seidel K, Krüger R (2008) Review: familial Parkinson’s disease—genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease. Neuropathol Appl Neurobiol 34(3):255–271.  https://doi.org/10.1111/j.1365-2990.2008.00952.x PubMedCrossRefGoogle Scholar
  157. Schneider LH, Murphy RB, Coons EE (1982) Lateralization of striatal dopamine (D2) receptors in normal rats. Neurosci Lett 13(33(3)):281–284CrossRefGoogle Scholar
  158. Schonhaut DR, McMillan CT, Spina S, Dickerson BC, Siderowf A, Devous MD Sr, Tsai R, Winer J, Russell DS, Litvan I, Roberson ED, Seeley WW, Grinberg LT, Kramer JH, Miller BL, Pressman P, Nasrallah I, Baker SL, Gomperts SN, Johnson KA, Grossman M, Jagust WJ, Boxer AL, Rabinovici GD (2017) (18) F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: a multicenter study. Ann Neurol 82:622–634PubMedCrossRefGoogle Scholar
  159. Seraji-Bozorgzad N, Bao F, George E, Krstevska S, Gorden V, Chorostecki J, Santiago C, Zak I, Caon C, Khan O (2015) Longitudinal study of the substantia nigra in Parkinson disease: a high-field (1) H-MR spectroscopy imaging study. Mov Disord 30:1400–1404PubMedCrossRefGoogle Scholar
  160. Shi J, Liu J, Qu Q (2014) Handedness and dominant side of symptoms in Parkinson’s disease. Med Clin (Barc) 142:141–144CrossRefGoogle Scholar
  161. Snow BJ, Tooyama I, McGeer EG, Yamada T, Calne DB, Takahashi H, Kimura H (1993) Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol 34:324–330PubMedCrossRefGoogle Scholar
  162. Standring S, Gray H (2008) Gray’s anatomy: the anatomical basis of clinical practice. Churchill Livingstone/Elsevier, EdinburghGoogle Scholar
  163. Sun Y, Li J, Suckling J, Feng L (2017) Asymmetry of hemispheric network topology reveals dissociable processes between functional and structural brain connectome in community-living elders. Front Aging Neurosci 9:361PubMedPubMedCentralCrossRefGoogle Scholar
  164. Tanaka S, Kanzaki R, Yoshibayashi M, Kamiya T, Sugishita M (1999) Dichotic listening in patients with situs inversus: brain asymmetry and situs asymmetry. Neuropsychologia 37(7):869–874.  https://doi.org/10.1016/S0028-3932(98)00144-4 PubMedCrossRefGoogle Scholar
  165. Tang CC, Poston KL, Dhawan V, Eidelberg D (2010) Abnormalities in metabolic network activity precede the onset of motor symptoms in Parkinson’s disease. J Neurosci 30(3):1049–1056PubMedPubMedCentralCrossRefGoogle Scholar
  166. Tanner JJ, Levy SA, Schwab NA, Hizel LP, Nguyen PT, Okun MS, Price CC (2017) Marked brain asymmetry with intact cognitive functioning in idiopathic Parkinson’s disease: a longitudinal analysis. Clin Neuropsychol 31:654–675PubMedCrossRefGoogle Scholar
  167. Tissingh G, Bergmans P, Booij J, Winogrodzka A, van Royen EA, Stoof JC, Wolters EC (1998) Drug-naive patients with Parkinson’s disease in Hoehn and Yahr stages I and II show a bilateral decrease in striatal dopamine transporters as revealed by [123I]beta-CIT SPECT. J Neurol 245:14–20PubMedCrossRefGoogle Scholar
  168. Toga AW, Thompson PM (2003) Mapping brain asymmetry. Nat Rev Neurosci 4:37–48PubMedCrossRefGoogle Scholar
  169. Tomer R, Levin BE, Weiner WJ (1993) Side of onset of motor symptoms influences cognition in Parkinson's disease. Ann Neurol 34(4):579–584PubMedCrossRefGoogle Scholar
  170. Uitti RJ, Baba Y, Whaley NR, Wszolek ZK, Putzke JD (2005) Parkinson disease: handedness predicts asymmetry. Neurology 64:1925–1930PubMedCrossRefGoogle Scholar
  171. Van Camp N, Vreys R, Van Laere K, Lauwers E, Beque D, Verhoye M, Casteels C, Verbruggen A, Debyser Z, Mortelmans L, Sijbers J, Nuyts J, Baekelandt V, Van der Linden A (2010) Morphologic and functional changes in the unilateral 6-hydroxydopamine lesion rat model for Parkinson’s disease discerned with microSPECT and quantitative MRI. MAGMA 23:65–75PubMedCrossRefGoogle Scholar
  172. van der Hoorn A, Burger H, Leenders KL, de Jong BM (2012) Handedness correlates with the dominant Parkinson side: a systematic review and meta-analysis. Mov Disord 27:206–210PubMedCrossRefGoogle Scholar
  173. Varrone A, Marek KL, Jennings D, Innis RB, Seibyl JP (2001) [(123)I]beta-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson’s disease and multiple system atrophy. Mov Disord 16:1023–1032PubMedCrossRefGoogle Scholar
  174. Vilas D, Segura B, Baggio HC, Pont-Sunyer C, Compta Y, Valldeoriola F, José Martí M, Quintana M, Bayés A, Hernández-Vara J, Calopa M, Aguilar M, Junqué C, Tolosa E, the Barcelona LRRK2 Study Group (2016) Nigral and striatal connectivity alterations in asymptomatic LRRK2 mutation carriers: a magnetic resonance imaging study. Mov Disord 31:1820–1828PubMedCrossRefGoogle Scholar
  175. Wang J, Yang QX, Sun X, Vesek J, Mosher Z, Vasavada M, Chu J, Kanekar S, Shivkumar V, Venkiteswaran K, Subramanian T (2015) MRI evaluation of asymmetry of nigrostriatal damage in the early stage of early-onset Parkinson’s disease. Parkinsonism Relat Disord 21:590–596PubMedCrossRefGoogle Scholar
  176. Wenning GK, Shephard B, Hawkes C, Petruckevitch A, Lees A, Quinn N (1995) Olfactory function in atypical parkinsonian syndromes. Acta Neurol Scand 91:247–250PubMedCrossRefGoogle Scholar
  177. Wu T, Hou Y et al (2015) Lateralization of brain activity pattern during unilateral movement in Parkinson’s disease. Hum Brain Mapp 36:1878–1891PubMedCrossRefGoogle Scholar
  178. Wu T, Hou Y, Hallett M, Zhang J, Chan P (2016) Proton MR spectroscopy for monitoring pathologic changes in the substantia nigra and globus pallidus in Parkinson disease. AJR Am J Roentgenol 206:385–389PubMedCrossRefGoogle Scholar
  179. Xu X, Wang Q, Zhang M (2008) Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. NeuroImage 40(1):35–42PubMedCrossRefGoogle Scholar
  180. Yagi S, Yoshikawa E, Futatsubashi M, Yokokura M, Yoshihara Y, Torizuka T, Ouchi Y (2010) Progression from unilateral to bilateral parkinsonism in early Parkinson disease: implication of mesocortical dopamine dysfunction by PET. J Nucl Med 51:1250–1257PubMedCrossRefGoogle Scholar
  181. Yust-Katz S, Tesler D, Treves TA, Melamed E, Djaldetti R (2008) Handedness as a predictor of side of onset of Parkinson’s disease. Parkinsonism Relat Disord 14(8):633–635PubMedCrossRefGoogle Scholar
  182. Zheng Z, Poon WS (2017) Rodent model of Parkinson’s disease: unilateral or bilateral. J Alzheimers Dis Parkinsonism 7:2CrossRefGoogle Scholar
  183. Zhou B, Yuan F, He Z, Tan C (2014) Application of proton magnetic resonance spectroscopy on substantia nigra metabolites in Parkinson’s disease. Brain Imaging Behav 8:97–101PubMedCrossRefGoogle Scholar
  184. Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S, Gasser T (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607.  https://doi.org/10.1016/j.neuron.2004.11.005 PubMedCrossRefGoogle Scholar
  185. Zucco G, Zeni MT, Perrone A, Piccolo I (2001) Olfactory sensitivity in early-stage Parkinson patients affected by more marked unilateral disorder. Percept Mot Skills 92:894–898PubMedCrossRefGoogle Scholar
  186. Zucco GM, Rovatti F, Stevenson RJ (2015) Olfactory asymmetric dysfunction in early Parkinson patients affected by unilateral disorder. Front Psychol 16(6):1020Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Riederer
    • 1
    • 2
  • K. A. Jellinger
    • 3
  • P. Kolber
    • 4
  • G. Hipp
    • 4
  • J. Sian-Hülsmann
    • 5
  • R. Krüger
    • 4
  1. 1.Center of Mental Health, Clinic and Policlinic for Psychiatry, Psychosomatics and PsychotherapyUniversity Hospital WürzburgWürzburgGermany
  2. 2.Psychiatry Department of Clinical ResearchUniversity of Southern Denmark, Odense University HospitalOdense CDenmark
  3. 3.Institute of Clinical NeurobiologyViennaAustria
  4. 4.Parkinson Research ClinicCentre Hospitalier de LuxembourgLuxembourgLuxembourg
  5. 5.Department of Medical PhysiologyUniversity of NairobiNairobiKenya

Personalised recommendations