BDNF effects on dendritic spine morphology and hippocampal function

  • Oliver von Bohlen und Halbach
  • Viola von Bohlen und Halbach
Review

Abstract

Neurotrophins, including brain-derived neurotrophic factor (BDNF), are expressed in the hippocampus, as well as their precursors, the pro-neurotrophins. The neurotrophins signal through specific tyrosine kinase receptors and the low affinity receptor p75NTR. Moreover, the pro-neurotrophins are considered to be biologically active by signaling through specific receptors. The neurotrophins, especially BDNF, are involved in processes related to learning and memory. Furthermore, it is thought that BDNF also plays a crucial role in major depression. This points to a role of BDNF as a central regulator of neuronal plasticity within the postnatal hippocampus. Morphological correlates of neuronal plasticity are changes on the level of the dendritic spines and, at least in the dentate gyrus of the hippocampus, on the level of adult neurogenesis. Specific changes in dendritic spines as well as in adult hippocampal neurogenesis can be seen in the context of several forms of learning and memory, and it is known that depression is accompanied by declines in the rate of adult neurogenesis and in spine densities. The possible roles of BDNF in neuronal plasticity within the hippocampus are highlighted in this review by focusing on the morphological components of neuronal plasticity.

Keywords

Enriched environment Voluntary exercise p75NTR trkB Dendritic spine 

References

  1. Alcantara S, Frisen J, del Rio JA, Soriano E, Barbacid M, Silos-Santiago I (1997) TrkB signaling is required for postnatal survival of CNS neurons and protects hippocampal and motor neurons from axotomy-induced cell death. J Neurosci 17:3623–3633PubMedGoogle Scholar
  2. Alonso M, Medina JH, Pozzo-Miller L (2004) ERK1/2 activation is necessary for BDNF to increase dendritic spine density in hippocampal CA1 pyramidal neurons. Learn Mem 11:172–178PubMedPubMedCentralCrossRefGoogle Scholar
  3. Altar CA (1999) Neurotrophins and depression. Trends Pharmacol Sci 20:59–61PubMedCrossRefGoogle Scholar
  4. Altschuler RA (1979) Morphometry of the effect of increased experience and training on synaptic density in area CA3 of the rat hippocampus. J Histochem Cytochem 27:1548–1550PubMedCrossRefGoogle Scholar
  5. Angelucci F, Brene S, Mathe AA (2005) BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry 10:345–352PubMedCrossRefGoogle Scholar
  6. Bahi A, Dreyer JL (2012) Hippocampus-specific deletion of tissue plasminogen activator “tPA” in adult mice impairs depression- and anxiety-like behaviors. Eur Neuropsychopharmacol 22:672–682PubMedCrossRefGoogle Scholar
  7. Banerjee R, Ghosh AK, Ghosh B, Bhattacharyya S, Mondal AC (2013) Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: an analysis in human Postmortem brain. Clin Med Insights Pathol 6:1–11PubMedPubMedCentralCrossRefGoogle Scholar
  8. Barbacid M (1994) The Trk family of neurotrophin receptors. J Neurobiol 25:1386–1403PubMedCrossRefGoogle Scholar
  9. Barker PA (1998) p75NTR: a study in contrasts. Cell Death Differ 5:346–356PubMedCrossRefGoogle Scholar
  10. Barrett GL, Greferath U, Barker PA, Trieu J, Bennie A (2005) Co-expression of the P75 neurotrophin receptor and neurotrophin receptor-interacting melanoma antigen homolog in the mature rat brain. Neuroscience 133:381–392PubMedCrossRefGoogle Scholar
  11. Becker N, Wierenga CJ, Fonseca R, Bonhoeffer T, Nagerl UV (2008) LTD induction causes morphological changes of presynaptic boutons and reduces their contacts with spines. Neuron 60:590–597PubMedCrossRefGoogle Scholar
  12. Bernabeu RO, Longo FM (2010) The p75 neurotrophin receptor is expressed by adult mouse dentate progenitor cells and regulates neuronal and non-neuronal cell genesis. BMC Neurosci 11:136PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39PubMedCrossRefGoogle Scholar
  14. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356PubMedPubMedCentralCrossRefGoogle Scholar
  15. Boitard C, Etchamendy N, Sauvant J, Aubert A, Tronel S, Marighetto A, Laye S, Ferreira G (2012) Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus 22:2095–2100PubMedCrossRefGoogle Scholar
  16. Bruel-Jungerman E, Laroche S, Rampon C (2005) New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci 21:513–521PubMedCrossRefGoogle Scholar
  17. Burghardt PR, Fulk LJ, Hand GA, Wilson MA (2004) The effects of chronic treadmill and wheel running on behavior in rats. Brain Res 1019:84–96PubMedCrossRefGoogle Scholar
  18. Cao B, Bauer IE, Sharma AN, Mwangi B, Frazier T, Lavagnino L, Zunta-Soares GB, Walss-Bass C, Glahn DC, Kapczinski F, Nielsen DA, Soares JC (2016) Reduced hippocampus volume and memory performance in bipolar disorder patients carrying the BDNF val66met met allele. J Affect Disord 198:198–205PubMedPubMedCentralCrossRefGoogle Scholar
  19. Castren E, Rantamaki T (2008) Neurotrophins in depression and antidepressant effects. Novartis Found Symp 289:43–52; discussion 53-49, 87-93PubMedCrossRefGoogle Scholar
  20. Catts VS, Al-Menhali N, Burne TH, Colditz MJ, Coulson EJ (2008) The p75 neurotrophin receptor regulates hippocampal neurogenesis and related behaviours. Eur J Neurosci 28:883–892PubMedCrossRefGoogle Scholar
  21. Chen J, Li CR, Yang H, Liu J, Zhang T, Jiao SS, Wang YJ, Xu ZQ (2016) proBDNF attenuates Hippocampal Neurogenesis and induces learning and memory deficits in aged mice. Neurotox Res 29:47–53PubMedCrossRefGoogle Scholar
  22. Colditz MJ, Catts VS, Al-menhali N, Osborne GW, Bartlett PF, Coulson EJ (2010) p75 neurotrophin receptor regulates basal and fluoxetine-stimulated hippocampal neurogenesis. Exp Brain Res 200:161–167PubMedCrossRefGoogle Scholar
  23. Conover JC, Yancopoulos GD (1997) Neurotrophin regulation of the developing nervous system: analyses of knockout mice. Rev Neurosci 8:13–27PubMedCrossRefGoogle Scholar
  24. Dieni S, Matsumoto T, Dekkers M, Rauskolb S, Ionescu MS, Deogracias R, Gundelfinger ED, Kojima M, Nestel S, Frotscher M, Barde YA (2012) BDNF and its pro-peptide are stored in presynaptic dense core vesicles in brain neurons. J Cell Biol 196:775–788PubMedPubMedCentralCrossRefGoogle Scholar
  25. Ding Q, Ying Z, Gomez-Pinilla F (2011) Exercise influences hippocampal plasticity by modulating brain-derived neurotrophic factor processing. Neuroscience 192:773–780PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dokter M, von Bohlen und Halbach O (2012) Neurogenesis within the adult hippocampus under physiological conditions and in depression. Neural Regen Res 7:8Google Scholar
  27. Dokter M, Busch R, Poser R, Vogt MA, von Bohlen und Halbach V, Gass P, Unsicker K, von Bohlen und Halbach O (2015) Implications of p75NTR for dentate gyrus morphology and hippocampus-related behavior revisited. Brain Struct Funct 220:1449–1462PubMedCrossRefGoogle Scholar
  28. Dougherty KD, Milner TA (1999) p75NTR immunoreactivity in the rat dentate gyrus is mostly within presynaptic profiles but is also found in some astrocytic and postsynaptic profiles. J Comp Neurol 407:77–91PubMedCrossRefGoogle Scholar
  29. Dranovsky A, Hen R (2006) Hippocampal neurogenesis: regulation by stress and antidepressants. Biol Psychiatry 59:1136–1143PubMedCrossRefGoogle Scholar
  30. Eldomiaty MA, Almasry SM, Desouky MK, Algaidi SA (2017) Voluntary running improves depressive behaviours and the structure of the hippocampus in rats: a possible impact of myokines. Brain Res 1657:29–42PubMedCrossRefGoogle Scholar
  31. Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70PubMedCrossRefGoogle Scholar
  32. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317PubMedCrossRefGoogle Scholar
  33. Ernfors P, Lee KF, Jaenisch R (1994) Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–150PubMedCrossRefGoogle Scholar
  34. Fabel K, Wolf SA, Ehninger D, Babu H, Leal-Galicia P, Kempermann G (2009) Additive effects of physical exercise and environmental enrichment on adult hippocampal neurogenesis in mice. Front Neurosci 3:50PubMedPubMedCentralGoogle Scholar
  35. Fiala JC, Feinberg M, Popov V, Harris KM (1998) Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J Neurosci 18:8900–8911PubMedGoogle Scholar
  36. Foltran RB, Diaz SL (2016) BDNF isoforms: a round trip ticket between neurogenesis and serotonin? J Neurochem 138:204–221PubMedCrossRefGoogle Scholar
  37. Frodl T, Schule C, Schmitt G, Born C, Baghai T, Zill P, Bottlender R, Rupprecht R, Bondy B, Reiser M, Moller HJ, Meisenzahl EM (2007) Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Arch Gen Psychiatry 64:410–416PubMedCrossRefGoogle Scholar
  38. Fujii T, Kunugi H (2009) p75NTR as a therapeutic target for neuropsychiatric diseases. Curr Mol Pharmacol 2:70–76PubMedCrossRefGoogle Scholar
  39. Gau YT, Liou YJ, Yu YW, Chen TJ, Lin MW, Tsai SJ, Hong CJ (2008) Evidence for association between genetic variants of p75 neurotrophin receptor (p75NTR) gene and antidepressant treatment response in Chinese major depressive disorder. Am J Med Genet B 147B:594–599CrossRefGoogle Scholar
  40. Geinisman Y (2000) Structural synaptic modifications associated with hippocampal LTP and behavioral learning. Cereb Cortex 10:952–962PubMedCrossRefGoogle Scholar
  41. Gomez-Pinilla F, So V, Kesslak JP (2001) Spatial learning induces neurotrophin receptor and synapsin I in the hippocampus. Brain Res 904:13–19PubMedCrossRefGoogle Scholar
  42. Goncalves JT, Schafer ST, Gage FH (2016) Adult Neurogenesis in the hippocampus: from stem cells to behavior. Cell 167:897–914PubMedCrossRefGoogle Scholar
  43. Gonul AS, Kitis O, Eker MC, Eker OD, Ozan E, Coburn K (2011) Association of the brain-derived neurotrophic factor Val66Met polymorphism with hippocampus volumes in drug-free depressed patients. World J Biol Psychiatry 12:110–118PubMedCrossRefGoogle Scholar
  44. Gosnell SN, Velasquez KM, Molfese DL, Molfese PJ, Madan A, Fowler JC, Christopher Frueh B, Baldwin PR, Salas R (2016) Prefrontal cortex, temporal cortex, and hippocampus volume are affected in suicidal psychiatric patients. Psychiatry Res 256:50–56PubMedCrossRefGoogle Scholar
  45. Guo J, Wang J, Zhang Z, Yan J, Chen M, Pang T, Zhang L, Liao H (2013) proNGF inhibits Neurogenesis and induces Glial activation in adult mouse dentate Gyrus. Neurochem Res 38:1695–1703PubMedCrossRefGoogle Scholar
  46. Guo J, Ji Y, Ding Y, Jiang W, Sun Y, Lu B, Nagappan G (2016) BDNF pro-peptide regulates dendritic spines via caspase-3. Cell Death Dis 7:e2264PubMedPubMedCentralCrossRefGoogle Scholar
  47. Gustafson D, Lissner L, Bengtsson C, Bjorkelund C, Skoog I (2004) A 24-year follow-up of body mass index and cerebral atrophy. Neurology 63:1876–1881PubMedCrossRefGoogle Scholar
  48. Hall J, Thomas KL, Everitt BJ (2000) Rapid and selective induction of BDNF expression in the hippocampus during contextual learning. Nat Neurosci 3:533–535PubMedCrossRefGoogle Scholar
  49. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci 12:2685–2705PubMedGoogle Scholar
  50. Harrisberger F, Smieskova R, Schmidt A, Lenz C, Walter A, Wittfeld K, Grabe HJ, Lang UE, Fusar-Poli P, Borgwardt S (2015) BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: a systematic review and meta-analysis. Neurosci Biobehav Rev 55:107–118PubMedCrossRefGoogle Scholar
  51. Harward SC, Hedrick NG, Hall CE, Parra-Bueno P, Milner TA, Pan E, Laviv T, Hempstead BL, Yasuda R, McNamara JO (2016) Autocrine BDNF-TrkB signalling within a single dendritic spine. Nature 538:99–103PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hasegawa S, Sakuragi S, Tominaga-Yoshino K, Ogura A (2015) Dendritic spine dynamics leading to spine elimination after repeated inductions of LTD. Sci Rep 5:7707PubMedPubMedCentralCrossRefGoogle Scholar
  53. Hasselmo ME, McClelland JL (1999) Neural models of memory. Curr Opin Neurobiol 9:184–188PubMedCrossRefGoogle Scholar
  54. Hercher C, Canetti L, Turecki G, Mechawar N (2010) Anterior cingulate pyramidal neurons display altered dendritic branching in depressed suicides. J Psychiatr Res 44:286–293PubMedCrossRefGoogle Scholar
  55. Hong KW, Lim JE, Go MJ, Shin Cho Y, Ahn Y, Han BG, Oh B (2012) Recapitulation of the association of the Val66Met polymorphism of BDNF gene with BMI in Koreans. Obesity (Silver Spring) 20:1871–1875CrossRefGoogle Scholar
  56. Horch HW, Katz LC (2002) BDNF release from single cells elicits local dendritic growth in nearby neurons. Nat Neurosci 5:1177–1184PubMedCrossRefGoogle Scholar
  57. Ikegaya Y, Ishizaka Y, Matsuki N (2002) BDNF attenuates hippocampal LTD via activation of phospholipase C: implications for a vertical shift in the frequency-response curve of synaptic plasticity. Eur J Neurosci 16:145–148PubMedCrossRefGoogle Scholar
  58. Ivanova T, Beyer C (2001) Pre- and postnatal expression of brain-derived neurotrophic factor mRNA/protein and tyrosine protein kinase receptor B mRNA in the mouse hippocampus. Neurosci Lett 307:21–24PubMedCrossRefGoogle Scholar
  59. Jessen F, Schuhmacher A, von Widdern O, Guttenthaler V, Hofels S, Suliman H, Scheef L, Block W, Urbach H, Maier W, Zobel A (2009) No association of the Val66Met polymorphism of the brain-derived neurotrophic factor with hippocampal volume in major depression. Psychiatr Genet 19:99–101PubMedCrossRefGoogle Scholar
  60. Joffe RT, Gatt JM, Kemp AH, Grieve S, Dobson-Stone C, Kuan SA, Schofield PR, Gordon E, Williams LM (2009) Brain derived neurotrophic factor Val66Met polymorphism, the five factor model of personality and hippocampal volume: implications for depressive illness. Hum Brain Mapp 30:1246–1256PubMedCrossRefGoogle Scholar
  61. Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R (2005) Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res 136:29–37PubMedCrossRefGoogle Scholar
  62. Katoh-Semba R, Takeuchi IK, Semba R, Kato K (1997) Distribution of brain-derived neurotrophic factor in rats and its changes with development in the brain. J Neurochem 69:34–42PubMedCrossRefGoogle Scholar
  63. Ke Z, Yip SP, Li L, Zheng XX, Tong KY (2011) The effects of voluntary, involuntary, and forced exercises on brain-derived neurotrophic factor and motor function recovery: a rat brain ischemia model. PLoS ONE 6:e16643PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kempermann G, Kronenberg G (2003) Depressed new neurons--adult hippocampal neurogenesis and a cellular plasticity hypothesis of major depression. Biol Psychiatry 54:499–503PubMedCrossRefGoogle Scholar
  65. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495PubMedCrossRefGoogle Scholar
  66. Kernie SG, Liebl DJ, Parada LF (2000) BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19:1290–1300PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kim YK, Lee HP, Won SD, Park EY, Lee HY, Lee BH, Lee SW, Yoon D, Han C, Kim DJ, Choi SH (2007) Low plasma BDNF is associated with suicidal behavior in major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 31:78–85CrossRefGoogle Scholar
  68. Klein R, Smeyne RJ, Wurst W, Long LK, Auerbach BA, Joyner AL, Barbacid M (1993) Targeted disruption of the trkB neurotrophin receptor gene results in nervous system lesions and neonatal death. Cell 75:113–122PubMedCrossRefGoogle Scholar
  69. Kolbeck R, Jungbluth S, Barde YA (1994) Characterisation of neurotrophin dimers and monomers. Eur J Biochem 225:995–1003PubMedCrossRefGoogle Scholar
  70. Konur S, Rabinowitz D, Fenstermaker VL, Yuste R (2003) Systematic regulation of spine sizes and densities in pyramidal neurons. J Neurobiol 56:95–112PubMedCrossRefGoogle Scholar
  71. Kunugi H, Hashimoto R, Yoshida M, Tatsumi M, Kamijima K (2004) A missense polymorphism (S205L) of the low-affinity neurotrophin receptor p75NTR gene is associated with depressive disorder and attempted suicide. Am J Med Genet B 129B:44–46CrossRefGoogle Scholar
  72. Law AJ, Weickert CS, Hyde TM, Kleinman JE, Harrison PJ (2004) Reduced spinophilin but not microtubule-associated protein 2 expression in the hippocampal formation in schizophrenia and mood disorders: molecular evidence for a pathology of dendritic spines. Am J Psychiatry 161:1848–1855PubMedCrossRefGoogle Scholar
  73. Lee KF, Li E, Huber LJ, Landis SC, Sharpe AH, Chao MV, Jaenisch R (1992) Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69:737–749PubMedCrossRefGoogle Scholar
  74. Lee TH, Kato H, Pan LH, Ryu JH, Kogure K, Itoyama Y (1998) Localization of nerve growth factor, trkA and P75 immunoreactivity in the hippocampal formation and basal forebrain of adult rats. Neuroscience 83:335–349PubMedCrossRefGoogle Scholar
  75. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948PubMedCrossRefGoogle Scholar
  76. Lee J, Duan W, Mattson MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82:1367–1375PubMedCrossRefGoogle Scholar
  77. Leuner B, Shors TJ (2004) New spines, new memories. Mol Neurobiol 29:117–130PubMedPubMedCentralCrossRefGoogle Scholar
  78. Leuner B, Falduto J, Shors TJ (2003) Associative memory formation increases the observation of dendritic spines in the hippocampus. J Neurosci 23:659–665PubMedPubMedCentralGoogle Scholar
  79. Li G, Jing P, Liu Z, Li Z, Ma H, Tu W, Zhang W, Zhuo C (2017) Beneficial effect of fluoxetine treatment against psychological stress is mediated by increasing BDNF expression in selected brain areas. Oncotarget 8:69527–69537PubMedPubMedCentralGoogle Scholar
  80. Liao GY, Li Y, Xu B (2013) Ablation of TrkB expression in RGS9-2 cells leads to hyperphagic obesity. Mol Metab 2:491–497PubMedPubMedCentralCrossRefGoogle Scholar
  81. Lømo T (2018) Discovering long-term potentiation (LTP) - recollections and reflections on what came after. Acta Physiol (Oxf) 222(2).  https://doi.org/10.1111/apha.12921
  82. Maclean CJ, Baker HF, Fine A, Ridley RM (1997) The distribution of p75 neurotrophin receptor-immunoreactive cells in the forebrain of the common marmoset (Callithrix Jacchus). Brain Res Bull 43:197–208PubMedCrossRefGoogle Scholar
  83. Magarinos AM, Li CJ, Gal Toth J, Bath KG, Jing D, Lee FS, McEwen BS (2011) Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons. Hippocampus 21:253–264PubMedPubMedCentralCrossRefGoogle Scholar
  84. Malenka RC, Nicoll RA (1999) Long-term potentiation--a decade of progress? Science 285:1870–1874PubMedCrossRefGoogle Scholar
  85. Marlatt MW, Potter MC, Lucassen PJ, van Praag H (2012) Running throughout middle-age improves memory function, hippocampal neurogenesis, and BDNF levels in female C57BL/6J mice. Dev Neurobiol 72:943–952PubMedPubMedCentralCrossRefGoogle Scholar
  86. Martin AA, Davidson TL (2014) Human cognitive function and the obesogenic environment. Physiol Behav 136:185–189PubMedCrossRefGoogle Scholar
  87. Martinowich K, Manji H, Lu B (2007) New insights into BDNF function in depression and anxiety. Nat Neurosci 10:1089–1093PubMedCrossRefGoogle Scholar
  88. Martinowich K, Schloesser RJ, Lu Y, Jimenez DV, Paredes D, Greene JS, Greig NH, Manji HK, Lu B (2012) Roles of p75(NTR), long-term depression, and cholinergic transmission in anxiety and acute stress coping. Biol Psychiatry 71:75–83PubMedCrossRefGoogle Scholar
  89. Maynard KR, Hobbs JW, Sukumar M, Kardian AS, Jimenez DV, Schloesser RJ, Martinowich K (2017) Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus. Brain Struct Funct 222(7):3295–3307.  https://doi.org/10.1007/s00429-017-1405-3 PubMedCrossRefGoogle Scholar
  90. Medina DL, Sciarretta C, Calella AM, von Bohlen und Halbach O, Unsicker K, Minichiello L (2004) TrkB regulates neocortex formation through the Shc/PLCgamma-mediated control of neuronal migration. EMBO J 23:3803–3814PubMedPubMedCentralCrossRefGoogle Scholar
  91. Megias M, Emri Z, Freund TF, Gulyas AI (2001) Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:527–540PubMedCrossRefGoogle Scholar
  92. Mervaala E, Fohr J, Kononen M, Valkonen-Korhonen M, Vainio P, Partanen K, Partanen J, Tiihonen J, Viinamaki H, Karjalainen AK, Lehtonen J (2000) Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol Med 30:117–125PubMedCrossRefGoogle Scholar
  93. Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860PubMedCrossRefGoogle Scholar
  94. Minichiello L, Korte M, Wolfer D, Kuhn R, Unsicker K, Cestari V, Rossi-Arnaud C, Lipp HP, Bonhoeffer T, Klein R (1999) Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24:401–414PubMedCrossRefGoogle Scholar
  95. Mizui T, Ishikawa Y, Kumanogoh H, Lume M, Matsumoto T, Hara T, Yamawaki S, Takahashi M, Shiosaka S, Itami C, Uegaki K, Saarma M, Kojima M (2015) BDNF pro-peptide actions facilitate hippocampal LTD and are altered by the common BDNF polymorphism Val66Met. Proc Natl Acad Sci U S A 112:E3067–E3074PubMedPubMedCentralCrossRefGoogle Scholar
  96. Mizui T, Ohira K, Kojima M (2017) BDNF pro-peptide: a novel synaptic modulator generated as an N-terminal fragment from the BDNF precursor by proteolytic processing. Neural Regen Res 12:1024–1027PubMedPubMedCentralCrossRefGoogle Scholar
  97. Mizuseki K, Miyawaki H (2017) Hippocampal information processing across sleep/wake cycles. Neurosci Res 118:30–47PubMedCrossRefGoogle Scholar
  98. Monfils MH, Teskey GC (2004) Induction of long-term depression is associated with decreased dendritic length and spine density in layers III and V of sensorimotor neocortex. Synapse 53:114–121PubMedCrossRefGoogle Scholar
  99. Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S, Parada LF, Nestler EJ (2007) Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 61:187–197PubMedCrossRefGoogle Scholar
  100. Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci U S A 91:12673–12675PubMedPubMedCentralCrossRefGoogle Scholar
  101. Muller D, Toni N, Buchs PA (2000) Spine changes associated with long-term potentiation. Hippocampus 10:596–604PubMedCrossRefGoogle Scholar
  102. Muller MB, Lucassen PJ, Yassouridis A, Hoogendijk WJ, Holsboer F, Swaab DF (2001) Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. Eur J Neurosci 14:1603–1612PubMedCrossRefGoogle Scholar
  103. Naber PA, Witter MP, Lopes Silva FH (2000) Networks of the hippocampal memory system of the rat. The pivotal role of the subiculum. Ann N Y Acad Sci 911:392–403PubMedCrossRefGoogle Scholar
  104. Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353PubMedCrossRefGoogle Scholar
  105. Norrholm SD, Ouimet CC (2001) Altered dendritic spine density in animal models of depression and in response to antidepressant treatment. Synapse 42:151–163PubMedCrossRefGoogle Scholar
  106. Nykjaer A, Willnow TE (2012) Sortilin: a receptor to regulate neuronal viability and function. Trends Neurosci 35:261–270PubMedCrossRefGoogle Scholar
  107. Nykjaer A, Lee R, Teng KK, Jansen P, Madsen P, Nielsen MS, Jacobsen C, Kliemannel M, Schwarz E, Willnow TE, Hempstead BL, Petersen CM (2004) Sortilin is essential for proNGF-induced neuronal cell death. Nature 427:843–848PubMedCrossRefGoogle Scholar
  108. O’Malley A, O’Connell C, Murphy KJ, Regan CM (2000) Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent. Neuroscience 99:229–232PubMedCrossRefGoogle Scholar
  109. Park HR, Park M, Choi J, Park KY, Chung HY, Lee J (2010) A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 482:235–239PubMedCrossRefGoogle Scholar
  110. Parnass Z, Tashiro A, Yuste R (2000) Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons. Hippocampus 10:561–568PubMedCrossRefGoogle Scholar
  111. Paul CE, Vereker E, Dickson KM, Barker PA (2004) A pro-apoptotic fragment of the p75 neurotrophin receptor is expressed in p75NTRExonIV null mice. J Neurosci 24:1917–1923PubMedCrossRefGoogle Scholar
  112. Petzold A, Psotta L, Brigadski T, Endres T, Lessmann V (2015) Chronic BDNF deficiency leads to an age-dependent impairment in spatial learning. Neurobiol Learn Mem 120:52–60PubMedCrossRefGoogle Scholar
  113. Pinar C, Fontaine CJ, Trivino-Paredes J, Lottenberg CP, Gil-Mohapel J, Christie BR (2017) Revisiting the flip side: long-term depression of synaptic efficacy in the hippocampus. Neurosci Biobehav Rev 80:394–413PubMedCrossRefGoogle Scholar
  114. Poser R, Dokter M, von Bohlen und Halbach V, Berger SM, Busch R, Baldus M, Unsicker K, von Bohlen und Halbach O (2015) Impact of a deletion of the full-length and short isoform of p75NTR on cholinergic innervation and the population of postmitotic doublecortin positive cells in the dentate gyrus. Front Neuroanat 9:63PubMedPubMedCentralCrossRefGoogle Scholar
  115. Qiao H, An SC, Ren W, Ma XM (2014) Progressive alterations of hippocampal CA3-CA1 synapses in an animal model of depression. Behav Brain Res 275:191–200PubMedCrossRefGoogle Scholar
  116. Qiao H, An SC, Xu C, Ma XM (2017) Role of proBDNF and BDNF in dendritic spine plasticity and depressive-like behaviors induced by an animal model of depression. Brain Res 1663:29–37PubMedCrossRefGoogle Scholar
  117. Rampon C, Tang YP, Goodhouse J, Shimizu E, Kyin M, Tsien JZ (2000) Enrichment induces structural changes and recovery from nonspatial memory deficits in CA1 NMDAR1-knockout mice. Nat Neurosci 3:238–244PubMedCrossRefGoogle Scholar
  118. Rantamaki T, Hendolin P, Kankaanpaa A, Mijatovic J, Piepponen P, Domenici E, Chao MV, Mannisto PT, Castren E (2007) Pharmacologically diverse antidepressants rapidly activate brain-derived neurotrophic factor receptor TrkB and induce phospholipase-Cgamma signaling pathways in mouse brain. Neuropsychopharmacology 32:2152–2162PubMedCrossRefGoogle Scholar
  119. Renelt M, von Bohlen und Halbach V, von Bohlen und Halbach O (2014) Distribution of PCP4 protein in the forebrain of adult mice. Acta Histochem 116:1056–1061PubMedCrossRefGoogle Scholar
  120. Reymann KG, Frey JU (2007) The late maintenance of hippocampal LTP: requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 52:24–40PubMedCrossRefGoogle Scholar
  121. Rolls ET (2000) Memory systems in the brain. Annu Rev Psychol 51:599–630PubMedCrossRefGoogle Scholar
  122. Rosoklija G, Toomayan G, Ellis SP, Keilp J, Mann JJ, Latov N, Hays AP, Dwork AJ (2000) Structural abnormalities of subicular dendrites in subjects with schizophrenia and mood disorders: preliminary findings. Arch Gen Psychiatry 57:349–356PubMedCrossRefGoogle Scholar
  123. Sarret P, Krzywkowski P, Segal L, Nielsen MS, Petersen CM, Mazella J, Stroh T, Beaudet A (2003) Distribution of NTS3 receptor/sortilin mRNA and protein in the rat central nervous system. J Comp Neurol 461:483–505PubMedCrossRefGoogle Scholar
  124. Schmitz C, Rhodes ME, Bludau M, Kaplan S, Ong P, Ueffing I, Vehoff J, Korr H, Frye CA (2002) Depression: reduced number of granule cells in the hippocampus of female, but not male, rats due to prenatal restraint stress. Mol Psychiatry 7:810–813PubMedCrossRefGoogle Scholar
  125. Sharma S, Fulton S (2013) Diet-induced obesity promotes depressive-like behaviour that is associated with neural adaptations in brain reward circuitry. Int J Obes 37:382–389CrossRefGoogle Scholar
  126. Sheldrick A, Camara S, Ilieva M, Riederer P, Michel TM (2017) Brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT3) levels in post-mortem brain tissue from patients with depression compared to healthy individuals - a proof of concept study. Eur Psychiatry 46:65–71PubMedCrossRefGoogle Scholar
  127. Sheng M, Erturk A (2014) Long-term depression: a cell biological view. Philos Trans R Soc Lond B 369:20130138CrossRefGoogle Scholar
  128. Skledar M, Nikolac M, Dodig-Curkovic K, Curkovic M, Borovecki F, Pivac N (2012) Association between brain-derived neurotrophic factor Val66Met and obesity in children and adolescents. Prog Neuro-Psychopharmacol Biol Psychiatry 36:136–140CrossRefGoogle Scholar
  129. Sølvsten CA, de Paoli F, Christensen JH, Nielsen AL (2016) Voluntary physical exercise induces expression and epigenetic remodeling of VegfA in the rat hippocampus. Mol Neurobiol.  https://doi.org/10.1007/s12035-016-0344-y
  130. Squire LR, Zola SM (1996) Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci U S A 93:13515–13522PubMedPubMedCentralCrossRefGoogle Scholar
  131. Squire LR, Genzel L, Wixted JT, Morris RG (2015) Memory consolidation. Cold Spring Harb Perspect Biol 7:a021766PubMedPubMedCentralCrossRefGoogle Scholar
  132. Stranahan AM, Lee K, Martin B, Maudsley S, Golden E, Cutler RG, Mattson MP (2009) Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus 19:951–961PubMedPubMedCentralCrossRefGoogle Scholar
  133. Teng HK, Teng KK, Lee R, Wright S, Tevar S, Almeida RD, Kermani P, Torkin R, Chen ZY, Lee FS, Kraemer RT, Nykjaer A, Hempstead BL (2005) ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J Neurosci 25:5455–5463PubMedCrossRefGoogle Scholar
  134. Teng KK, Felice S, Kim T, Hempstead BL (2010) Understanding proneurotrophin actions: recent advances and challenges. Dev Neurobiol 70:350–359PubMedPubMedCentralGoogle Scholar
  135. Toni N, Buchs PA, Nikonenko I, Bron CR, Muller D (1999) LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite. Nature 402:421–425PubMedCrossRefGoogle Scholar
  136. Tozuka Y, Wada E, Wada K (2009) Diet-induced obesity in female mice leads to peroxidized lipid accumulations and impairment of hippocampal neurogenesis during the early life of their offspring. FASEB J 23:1920–1934PubMedCrossRefGoogle Scholar
  137. Vaegter CB, Jansen P, Fjorback AW, Glerup S, Skeldal S, Kjolby M, Richner M, Erdmann B, Nyengaard JR, Tessarollo L, Lewin GR, Willnow TE, Chao MV, Nykjaer A (2011) Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 14:54–61PubMedCrossRefGoogle Scholar
  138. van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96:13427–13431PubMedPubMedCentralCrossRefGoogle Scholar
  139. Vaynman S, Ying Z, Gomez-Pinilla F (2004) Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition. Eur J Neurosci 20:2580–2590PubMedCrossRefGoogle Scholar
  140. Veena J, Rao BS, Srikumar BN (2011) Regulation of adult neurogenesis in the hippocampus by stress, acetylcholine and dopamine. J Nat Sci Biol Med 2:26–37PubMedPubMedCentralCrossRefGoogle Scholar
  141. von Bohlen und Halbach O (2010a) Dendritic spine abnormalities in mental retardation. Cell Tissue Res 342:317–323CrossRefGoogle Scholar
  142. von Bohlen und Halbach O (2010b) Involvement of BDNF in age-dependent alterations in the hippocampus. Front Aging Neurosci 2:36Google Scholar
  143. von Bohlen und Halbach O, Minichiello L, Unsicker K (2003) Haploinsufficiency in trkB and/or trkC neurotrophin receptors causes structural alterations in the aged hippocampus and amygdala. Eur J Neurosci 18:2319–2325CrossRefGoogle Scholar
  144. von Bohlen und Halbach O, Krause S, Medina D, Sciarretta C, Minichiello L, Unsicker K (2006a) Regional- and age-dependent reduction in trkB receptor expression in the hippocampus is associated with altered spine morphologies. Biol Psychiatry 59:793–800CrossRefGoogle Scholar
  145. von Bohlen und Halbach O, Zacher C, Gass P, Unsicker K (2006b) Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice. J Neurosci Res 83:525–531CrossRefGoogle Scholar
  146. von Bohlen und Halbach O, Minichiello L, Unsicker K (2008) TrkB but not trkC receptors are necessary for postnatal maintenance of hippocampal spines. Neurobiol Aging 29:1247–1255CrossRefGoogle Scholar
  147. von Schack D, Casademunt E, Schweigreiter R, Meyer M, Bibel M, Dechant G (2001) Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat Neurosci 4:977–978CrossRefGoogle Scholar
  148. Voronin L, Byzov A, Kleschevnikov A, Kozhemyakin M, Kuhnt U, Volgushev M (1995) Neurophysiological analysis of long-term potentiation in mammalian brain. Behav Brain Res 66:45–52PubMedCrossRefGoogle Scholar
  149. Webster MJ, Herman MM, Kleinman JE, Shannon Weickert C (2006) BDNF and trkB mRNA expression in the hippocampus and temporal cortex during the human lifespan. Gene Expr Patterns 6:941–951PubMedCrossRefGoogle Scholar
  150. Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097PubMedCrossRefGoogle Scholar
  151. Willette AA, Kapogiannis D (2015) Does the brain shrink as the waist expands? Ageing Res Rev 20:86–97PubMedCrossRefGoogle Scholar
  152. Woo NH, Teng HK, Siao CJ, Chiaruttini C, Pang PT, Milner TA, Hempstead BL, Lu B (2005) Activation of p75NTR by proBDNF facilitates hippocampal long-term depression. Nat Neurosci 8:1069–1077PubMedCrossRefGoogle Scholar
  153. Xenos D, Kamceva M, Tomasi S, Cardin JA, Schwartz ML, Vaccarino FM (2017) Loss of TrkB Signaling in Parvalbumin-expressing basket cells results in network activity disruption and abnormal behavior. Cereb Cortex:1–15Google Scholar
  154. Xia J, Chen J, Zhou Y, Zhang J, Yang B, Xia L, Wang C (2004) Volumetric MRI analysis of the amygdala and hippocampus in subjects with major depression. J Huazhong Univ Sci Technol Med Sci 24(500–502):506Google Scholar
  155. Yamada N, Katsuura G, Ochi Y, Ebihara K, Kusakabe T, Hosoda K, Nakao K (2011) Impaired CNS leptin action is implicated in depression associated with obesity. Endocrinology 152:2634–2643PubMedCrossRefGoogle Scholar
  156. Yan Q, Radeke MJ, Matheson CR, Talvenheimo J, Welcher AA, Feinstein SC (1997) Immunocytochemical localization of TrkB in the central nervous system of the adult rat. J Comp Neurol 378:135–157PubMedCrossRefGoogle Scholar
  157. Yang J, Harte-Hargrove LC, Siao CJ, Marinic T, Clarke R, Ma Q, Jing D, Lafrancois JJ, Bath KG, Mark W, Ballon D, Lee FS, Scharfman HE, Hempstead BL (2014) proBDNF negatively regulates neuronal remodeling, synaptic transmission, and synaptic plasticity in hippocampus. Cell Rep 7:796–806PubMedPubMedCentralCrossRefGoogle Scholar
  158. Yeo TT, Chua-Couzens J, Butcher LL, Bredesen DE, Cooper JD, Valletta JS, Mobley WC, Longo FM (1997) Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity, and target innervation. J Neurosci 17:7594–7605PubMedGoogle Scholar
  159. Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089PubMedCrossRefGoogle Scholar
  160. Zagrebelsky M, Holz A, Dechant G, Barde YA, Bonhoeffer T, Korte M (2005) The p75 neurotrophin receptor negatively modulates dendrite complexity and spine density in hippocampal neurons. J Neurosci 25:9989–9999PubMedCrossRefGoogle Scholar
  161. Zeng J, Racicott J, Morales CR (2009) The inactivation of the sortilin gene leads to a partial disruption of prosaposin trafficking to the lysosomes. Exp Cell Res 315:3112–3124PubMedCrossRefGoogle Scholar
  162. Zheng K, An JJ, Yang F, Xu W, Xu ZQ, Wu J, Hokfelt TG, Fisahn A, Xu B, Lu B (2011) TrkB signaling in parvalbumin-positive interneurons is critical for gamma-band network synchronization in hippocampus. Proc Natl Acad Sci U S A 108:17201–17206PubMedPubMedCentralCrossRefGoogle Scholar
  163. Zhou Q, Homma KJ, Poo MM (2004) Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44:749–757PubMedCrossRefGoogle Scholar
  164. Zhou L, Xiong J, Lim Y, Ruan Y, Huang C, Zhu Y, Zhong JH, Xiao Z, Zhou XF (2013) Upregulation of blood proBDNF and its receptors in major depression. J Affect Disord 150:776–784PubMedCrossRefGoogle Scholar
  165. Zhou C, Zhong J, Zou B, Fang L, Chen J, Deng X, Zhang L, Zhao X, Qu Z, Lei Y, Lei T (2017) Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS ONE 12:e0172270PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Oliver von Bohlen und Halbach
    • 1
  • Viola von Bohlen und Halbach
    • 1
  1. 1.Institut für Anatomie und ZellbiologieUniversitätsmedizin GreifswaldGreifswaldGermany

Personalised recommendations