The complex interplay between neutrophils and cancer

Review

Abstract

Neutrophils are the most abundant type of white blood cell, and are an essential component of the innate immune system. They characteristically arrive rapidly at sites of infection and injury, and release a variety of cytokines and toxic molecules to eliminate pathogens and elicit an acute inflammatory response. Research into the function of neutrophils in cancer suggest they have divergent roles. Indeed, while most studies have found neutrophils to be associated with cancer progression, others have also documented anticancer effects. In this review, we describe the investigations into neutrophil populations that have been implicated in promoting tumor growth and metastasis as well those demonstrating antitumor functions. The collective research suggests a complex role for neutrophils in cancer biology, which raises the prospect of their targeting for the treatment of cancer.

Keywords

Tumor-associated neutrophils Cancer biomarker Neutrophil polarization Immunosuppression Metastasis Neutrophil targeted therapies 

References

  1. Abdol Razak N, Elaskalani O, Metharom P (2017) Pancreatic cancer-induced neutrophil extracellular traps: a potential contributor to cancer-associated thrombosis. Int J Mol Sci 18(3):487.  https://doi.org/10.3390/ijms18030487 CrossRefPubMedCentralGoogle Scholar
  2. Achberger S, Aldrich W, Tubbs R, Crabb JW, Singh AD, Triozzi PL (2014) Circulating immune cell and microRNA in patients with uveal melanoma developing metastatic disease. Mol Immunol 58(2):182–186Google Scholar
  3. Ackermann MF, Lamm KR, Wiegand GW, Luster MI (1989) Antitumor activity of murine neutrophils demonstrated by cytometric analysis. Cancer Res 49(3):528–532PubMedGoogle Scholar
  4. Andzinski L, Kasnitz N, Stahnke S, Wu C-F, Gereke M, von Köckritz-Blickwede M, Schilling B, Brandau S, Weiss S, Jablonska J (2016) Type IIFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human. Int J Cancer 138(8):1982–1993.  https://doi.org/10.1002/ijc.29945 CrossRefPubMedGoogle Scholar
  5. Asano Y, Yokoyama T, Shibata S, Kobayashi S, Shimoda K, Nakashima H, Okamura S, Niho Y (1997) Effect of the chimeric soluble granulocyte Colony-stimulating factor receptor on the proliferation of leukemic blast cells from patients with acute Myeloblastic leukemia. Cancer Res 57(16):3395–3397PubMedGoogle Scholar
  6. Asaoka T, Miyamoto A, Maeda S, Tsujie M, Hama N, Yamamoto K, Miyake M et al (2016) Prognostic impact of preoperative NLR and CA19-9 in pancreatic cancer. Pancreatology 16(3):434–440.  https://doi.org/10.1016/j.pan.2015.10.006 CrossRefPubMedGoogle Scholar
  7. Azab B, Bhatt VR, Phookan J, Murukutla S, Kohn N, Terjanian T, Widmann WD (2012) Usefulness of the neutrophil-to-lymphocyte ratio in predicting short- and long-term mortality in breast cancer patients. Ann Surg Oncol 19(1):217–224.  https://doi.org/10.1245/s10434-011-1814-0 CrossRefPubMedGoogle Scholar
  8. Bald T, Quast T, Landsberg J, Rogava M, Glodde N, Lopez-Ramos D, Kohlmeyer J et al (2014) Ultraviolet-radiation-induced inflammation promotes Angiotropism and metastasis in melanoma. Nature 507(7490):109–113.  https://doi.org/10.1038/nature13111 CrossRefPubMedGoogle Scholar
  9. Ban Y, Mai J, Li X, Mitchell-Flack M, Zhang T, Zhang L, Chouchane L, Ferrari M, Shen H, Ma X (2017) Targeting autocrine CCL5-CCR5 Axis reprograms immunosuppressive myeloid cells and reinvigorates antitumor immunity. Cancer Res 77(11):1–12.  https://doi.org/10.1158/0008-5472.CAN-16-2913
  10. Belikov AV, Schraven B, Simeoni L (2015) T cells and reactive oxygen species. J Biomed Sci 22:85.  https://doi.org/10.1186/s12929-015-0194-3
  11. Blaisdell A, Crequer A, Columbus D, Daikoku T, Mittal K, Dey SK, Erlebacher A (2015) Neutrophils oppose uterine epithelial carcinogenesis via debridement of hypoxic tumor cells. Cancer Cell 28(6):785–799.  https://doi.org/10.1016/j.ccell.2015.11.005 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Borregaard N, Zhang P, Wang ND, Hetherington CJ, Darlington GJ, Tenen DG, Bertolone SJ et al (2010) Neutrophils, from marrow to microbes. Immunity 33(5):657–670.  https://doi.org/10.1016/j.immuni.2010.11.011 CrossRefPubMedGoogle Scholar
  13. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y, Zychlinsky A (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535.  https://doi.org/10.1126/science.1092385 CrossRefPubMedGoogle Scholar
  14. Bronte V, Brandau S, Chen S-H, Colombo MP, Frey AB, Greten TF, Mandruzzato S et al (2016) Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun 7:12150.  https://doi.org/10.1038/ncomms12150
  15. Caruso RA, Bellocco R, Pagano M, Bertoli G, Rigoli L, Inferrera C (2002) Prognostic value of Intratumoral neutrophils in advanced gastric carcinoma in a high-risk area in northern Italy. Mod Pathol 15(8):831–837.  https://doi.org/10.1097/01.MP.0000020391.98998.6B CrossRefPubMedGoogle Scholar
  16. Casbon A-J, Reynaud D, Park C, Khuc E, Gan DD, Schepers K, Passegué E, Werb Z (2015) Invasive breast cancer reprograms early myeloid differentiation in the bone marrow to generate immunosuppressive neutrophils. Proc Natl Acad Sci U S A 112(6):E566–E575.  https://doi.org/10.1073/pnas.1424927112 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Cedrés S, Torrejon D, Martínez A, Martinez P, Navarro A, Zamora E, Mulet-Margalef N, Felip E (2012) Neutrophil to lymphocyte ratio (NLR) as an indicator of poor prognosis in stage IV non-small cell lung cancer. Clin Transl Oncol 14(11):864–869.  https://doi.org/10.1007/s12094-012-0872-5 CrossRefPubMedGoogle Scholar
  18. Chakraborty A, Guha S (2007) Granulocyte Colony-stimulating factor/granulocyte Colony-stimulating factor receptor biological Axis promotes survival and growth of bladder cancer cells. Urology 69(6):1210–1215.  https://doi.org/10.1016/j.urology.2007.02.035 CrossRefPubMedGoogle Scholar
  19. Chang Y, Chin JAT, Li S, Nishikawa T, Kaneda Y (2016) Virus-stimulated neutrophils in the tumor microenvironment enhance T cell-mediated anti-tumor immunity. Oncotarget 7(27):42195–42207.  https://doi.org/10.18632/oncotarget.9743 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cho HB, Hur HW, Kim SW, Kim SH, Kim JH, Kim YT, Lee K (2009) Pre-treatment neutrophil to lymphocyte ratio is elevated in epithelial ovarian cancer and predicts survival after treatment. Cancer Immunol Immunother 58(1):15–23.  https://doi.org/10.1007/s00262-008-0516-3 CrossRefPubMedGoogle Scholar
  21. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau C-S, Verstegen NJM et al (2015) IL-17-producing Γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522(7556:345–348.  https://doi.org/10.1038/nature14282 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446.  https://doi.org/10.1038/nrc.2016.52 CrossRefPubMedGoogle Scholar
  23. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P, Ferri L (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123(8):3446.  https://doi.org/10.1172/JCI67484 CrossRefPubMedCentralGoogle Scholar
  24. Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, Ryan RJH et al (2012) Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci U S A 109(7):2491–2496.  https://doi.org/10.1073/pnas.1113744109 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Daley JM, Thomay AA, Connolly MD, Reichner JS, Albina JE (2007) Use of Ly6G-specific monoclonal antibody to deplete neutrophils in mice. J Leukoc Biol 83(1):64–70.  https://doi.org/10.1189/jlb.0407247 CrossRefPubMedGoogle Scholar
  26. Donskov F (2013) Immunomonitoring and prognostic relevance of neutrophils in clinical trials. Semin Cancer Biol 23(3):200–207.  https://doi.org/10.1016/j.semcancer.2013.02.001 CrossRefPubMedGoogle Scholar
  27. Dumitru CA, Moses K, Trellakis S, Lang S, Brandau S (2012) Neutrophils and granulocytic myeloid-derived suppressor cells: Immunophenotyping, cell biology and clinical relevance in human oncology. Cancer Immunol Immunother 61(8):1155–1167.  https://doi.org/10.1007/s00262-012-1294-5 CrossRefPubMedGoogle Scholar
  28. Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T et al (2014) Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest 124(12):5466–5480.  https://doi.org/10.1172/JCI77053 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Eruslanov EB, Singhal S, Albelda SM (2017) Mouse versus human neutrophils in cancer: a major knowledge gap. Trends Cancer 3(2):149–160.  https://doi.org/10.1016/j.trecan.2016.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Finisguerra V, Di Conza G, Di Matteo M, Serneels J, Costa S, Thompson AAR, Wauters E et al (2015) MET is required for the recruitment of anti-tumoral neutrophils. Nature 522(7556):349–353.  https://doi.org/10.1038/nature14407 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fridlender, Zvi G, and Steven M Albelda. 2012. “Tumor-Associated Neutrophils: Friend or Foe?” Carcinogenesis 33 (5):949–955.  https://doi.org/10.1093/carcin/bgs123
  32. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-Beta: “N1” versus “N2” TAN. Cancer Cell 16(3). Elsevier):183–194.  https://doi.org/10.1016/j.ccr.2009.06.017 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174.  https://doi.org/10.1038/nri2506 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12(11):1035–1044.  https://doi.org/10.1038/ni.2109 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Giallongo C, Parrinello N, Tibullo D, La Cava P, Romano A, Chiarenza A, Barbagallo I et al (2014) “Myeloid derived suppressor cells (MDSCs) are increased and exert immunosuppressive activity together with Polymorphonuclear leukocytes (PMNs) in chronic myeloid leukemia patients. PLoS ONE 9(7):e101848.  https://doi.org/10.1371/journal.pone.0101848 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Governa V, Trella E, Mele V, Tornillo L, Amicarella F, Cremonesi E, Muraro MG et al (2017) The interplay between neutrophils and CD8 + T cells improves survival in human colorectal cancer. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-16-2047
  37. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R (2011) Tumor entrained neutrophils inhibit seeding in the Premetastatic lung. Cancer Cell 20(3):300–314.  https://doi.org/10.1016/j.ccr.2011.08.012 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gunji Y, Hori S, Aoe T, Asano T, Ochiai T, Isono K, Saito T (1994) High frequency of cancer patients with abnormal assembly of the T cell receptor-CD3 complex in peripheral blood T lymphocytes. Jpn J Cancer Res Gann 85(12):1189–1192CrossRefPubMedGoogle Scholar
  39. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70CrossRefPubMedGoogle Scholar
  40. Hanahan D, Weinberg RAA (2011) Hallmarks of cancer: the next generation. Cell 144.  https://doi.org/10.1016/j.cell.2011.02.013
  41. Harold F, Dvorak MD (1986) Tumors: wounds that do not heal. N Engl J Med 315(26):1650–1659.  https://doi.org/10.1056/NEJM198612253152606 CrossRefGoogle Scholar
  42. Houghton AMG, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE, Stolz DB et al (2010) Neutrophil elastase–mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16(2):219–223.  https://doi.org/10.1038/nm.2084 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Huh SJ, Liang S, Sharma A, Dong C, Robertson GP (2010) Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 70(14):6071–6082.  https://doi.org/10.1158/0008-5472.CAN-09-4442 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Jamieson T, Clarke M, Steele CW, Samuel MS, Neumann J, Jung A, Huels D et al (2012) Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Investig 122(9):3127–3144.  https://doi.org/10.1172/JCI61067 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jordan KR, Kapoor P, Spongberg E, Tobin RP, Gao D, Borges VF, McCarter MD (2017) Immunosuppressive myeloid-derived suppressor cells are increased in Splenocytes from cancer patients. Cancer Immunol Immunother 66(4):503–513.  https://doi.org/10.1007/s00262-016-1953-z CrossRefPubMedGoogle Scholar
  46. Joshita S, Nakazawa K, Sugiyama Y, Kamijo A, Matsubayashi K, Miyabayashi H, Furuta K, Kitano K, Kawa S (2009) Granulocyte-Colony stimulating factor-producing pancreatic Adenosquamous carcinoma showing aggressive clinical course. Intern Med (Tokyo, Japan) 48(9):687–691CrossRefGoogle Scholar
  47. Joyce RA, Hartmann O, Chervenick PA (1979) Splenic Granulopoiesis in mice following Administration of Cyclophosphamide. Cancer Res 39(1):215–218PubMedGoogle Scholar
  48. Kang T, Zhu Q, Wei D, Feng J, Yao J, Jiang T, Song Q et al (2017) Nanoparticles coated with neutrophil membranes can effectively treat cancer metastasis. ACS Nano 11(2):1397–1411.  https://doi.org/10.1021/acsnano.6b06477 CrossRefPubMedGoogle Scholar
  49. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141(1):52–67.  https://doi.org/10.1016/j.cell.2010.03.015 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Koh YW, Choi J-H, Ahn MS, Choi YW, Lee HW (2016) Baseline neutrophil–lymphocyte ratio is associated with baseline and subsequent presence of brain metastases in advanced non-small-cell lung cancer. Sci Rep 6(1):38585.  https://doi.org/10.1038/srep38585 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kolaczkowska E, Kubes P (2013) Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol 13(3):159–175.  https://doi.org/10.1038/nri3399 CrossRefPubMedGoogle Scholar
  52. Köstlin N, Kugel H, Spring B, Leiber A, Marmé A, Henes M, Rieber N, Hartl D, Poets CF, Gille C (2014) Granulocytic myeloid derived suppressor cells expand in human pregnancy and modulate T-cell responses. Eur J Immunol 44(9):2582–2591.  https://doi.org/10.1002/eji.201344200 CrossRefPubMedGoogle Scholar
  53. Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X, Yu L et al (2010) Granulocyte-Colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci U S A 107(50):21248–21255.  https://doi.org/10.1073/pnas.1015855107 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kruger P, Saffarzadeh M, Weber ANR, Rieber N, Radsak M, von Bernuth H, Benarafa C, Roos D, Skokowa J, Hartl D (2015) Neutrophils: between host Defence, immune modulation, and tissue injury. PLoS Pathog 11(3):e1004651.  https://doi.org/10.1371/journal.ppat.1004651 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kyo S, Kanaya T, Takakura M, Inoue M (2000) A case of cervical cancer with aggressive tumor growth: possible autocrine growth stimulation by G-CSF and Il-6. Gynecol Oncol 78(3 Pt 1):383–387.  https://doi.org/10.1006/gyno.2000.5904. CrossRefPubMedGoogle Scholar
  56. Li Y, Wang C, Xu M, Kong C, Qu A, Zhang M, Zheng Z, Zhang G (2017) Preoperative NLR for predicting survival rate after radical resection combined with adjuvant immunotherapy with CIK and postoperative chemotherapy in gastric cancer. J Cancer Res Clin Oncol 143(5):861–871.  https://doi.org/10.1007/s00432-016-2330-1 CrossRefPubMedGoogle Scholar
  57. López-Lago MA, Posner S, Thodima VJ, Molina AM, Motzer RJ, Chaganti RSK (2013) Neutrophil chemokines secreted by tumor cells mount a lung Antimetastatic response during renal cell carcinoma progression. Oncogene 32(14):1752–1760.  https://doi.org/10.1038/onc.2012.201 CrossRefPubMedGoogle Scholar
  58. Lorente D, Mateo J, Templeton AJ, Zafeiriou Z, Bianchini D, Ferraldeschi R, Bahl A et al (2015) Baseline neutrophil–lymphocyte ratio (NLR) is associated with survival and response to treatment with second-line chemotherapy for advanced prostate cancer independent of baseline steroid use. Ann Oncol 26(4):750–755.  https://doi.org/10.1093/annonc/mdu587 CrossRefPubMedGoogle Scholar
  59. Mantovani A, Cassatella MA, Costantini C, Jaillon S (2011) Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 11(8):519–531.  https://doi.org/10.1038/nri3024 CrossRefPubMedGoogle Scholar
  60. Marini O, Costa S, Bevilacqua D, Calzetti F, Tamassia N, Spina C, De Sabata D et al (2017) Mature CD10+ and immature CD10− neutrophils present in G-CSF–treated donors display opposite effects on T cells. Blood 129(10)Google Scholar
  61. Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125(9):3356–3364.  https://doi.org/10.1172/JCI80005 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Millrud CR, Kågedal Å, Georén SK, Winqvist O, Uddman R, Razavi R, Munck-Wikland E, Cardell LO (2017) NET-producing CD16 high CD62L dim neutrophils migrate to tumor sites and predict improved survival in patients with HNSCC. Int J Cancer 140(11):2557–2567.  https://doi.org/10.1002/ijc.30671 CrossRefPubMedGoogle Scholar
  63. Mishalian I, Bayuh R, Levy L, Zolotarov L, Michaeli J, Fridlender ZG (2013) Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunol Immunother 62(11):1745–1756.  https://doi.org/10.1007/s00262-013-1476-9 CrossRefPubMedGoogle Scholar
  64. Mishalian I, Bayuh R, Eruslanov E, Michaeli J, Levy L, Zolotarov L, Singhal S, Albelda SM, Granot Z, Fridlender ZG (2014) Neutrophils recruit regulatory T-cells into tumors via secretion of CCL17-a new mechanism of impaired antitumor immunity. Int J Cancer 135(5):1178–1186.  https://doi.org/10.1002/ijc.28770 CrossRefPubMedGoogle Scholar
  65. Mishalian I, Granot Z, Fridlender ZG (2017) The diversity of circulating neutrophils in cancer. Immunobiology 222(1):82–88.  https://doi.org/10.1016/j.imbio.2016.02.001 CrossRefPubMedGoogle Scholar
  66. Mizoguchi H, O’Shea JJ, Longo DL, Loeffler CM, McVicar DW, Ochoa AC (1992) Alterations in signal transduction molecules in T lymphocytes from tumor-bearing mice. Science 258(5089)Google Scholar
  67. Nagaraj S, Youn J-I, Gabrilovich DI (2013) Reciprocal relationship between myeloid-derived suppressor cells and T cells. J Immunol (Baltimore, Md : 1950) 191(1):17–23.  https://doi.org/10.4049/jimmunol.1300654 CrossRefGoogle Scholar
  68. Navegantes KC, de Souza Gomes R, Pereira PAT, Czaikoski PG, Azevedo CHM, Monteiro MC (2017) Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med 15(1):36.  https://doi.org/10.1186/s12967-017-1141-8 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Orditura M, Galizia G, Diana A, Saccone C, Cobellis L, Ventriglia J, Iovino F et al (2016) Neutrophil to lymphocyte ratio (NLR) for prediction of distant metastasis-free survival (DMFS) in early breast cancer: a propensity score-matched analysis. ESMO Open 1(2):e000038.  https://doi.org/10.1136/esmoopen-2016-000038 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Park J, Wysocki RW, Amoozgar Z, Maiorino L, Fein MR, Jorns J, Schott AF et al (2016) Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps. Sci Transl Med 8(361)Google Scholar
  71. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers J-W, Ulfman LH, Leenen LP, Pickkers P, Koenderman L (2012) A subset of neutrophils in human systemic inflammation inhibits T cell responses through mac-1. J Clin Invest 122(1):327–336.  https://doi.org/10.1172/JCI57990 CrossRefPubMedGoogle Scholar
  72. Pillay J, Tak T, Kamp VM, Koenderman L (2013) Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci 70(20):3813–3827.  https://doi.org/10.1007/s00018-013-1286-4 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Riesco A (1970) Five-year cancer cure: relation to Total amount of peripheral lymphocytes and neutrophils. Cancer 25(1):135–140.  https://doi.org/10.1002/1097-0142(197001)25:1<135::AID-CNCR2820250120>3.0.CO;2-9 CrossRefPubMedGoogle Scholar
  74. Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A et al (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res 64(16):5839–5849.  https://doi.org/10.1158/0008-5472.CAN-04-0465 CrossRefPubMedGoogle Scholar
  75. Sade-Feldman M, Kanterman J, Klieger Y, Ish-Shalom E, Olga M, Saragovi A, Shtainberg H, Lotem M, Baniyash M (2016) Clinical significance of circulating CD33+CD11b+HLA-DR− myeloid cells in patients with stage IV melanoma treated with ipilimumab. Clin Cancer Res 22(23):5661−5672Google Scholar
  76. Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P et al (2015) Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 10(4):562–573.  https://doi.org/10.1016/j.celrep.2014.12.039 CrossRefPubMedGoogle Scholar
  77. Sarraf KM, Belcher E, Raevsky E, Nicholson AG, Goldstraw P, Lim E (2009) Neutrophil/lymphocyte ratio and its association with survival after complete resection in non–small cell lung cancer. J Thorac Cardiovasc Surg 137(2):425–428.  https://doi.org/10.1016/j.jtcvs.2008.05.046 CrossRefPubMedGoogle Scholar
  78. Savarese TM, Mitchell K, McQuain C, Campbell CL, Guardiani R, Wuu J, Ollari C et al (2001) Coexpression of granulocyte Colony stimulating factor and its receptor in primary ovarian carcinomas. Cancer Lett 162(1):105–115CrossRefPubMedGoogle Scholar
  79. Scapini P, Cassatella MA (2014) Social networking of human neutrophils within the immune system. Blood 124(5)Google Scholar
  80. Scapini P, Marini O, Tecchio C, Cassatella MA (2016) Human neutrophils in the Saga of cellular heterogeneity: insights and open questions. Immunol Rev 273(1):48–60.  https://doi.org/10.1111/imr.12448 CrossRefPubMedGoogle Scholar
  81. Schmielau J, Finn OJ (2001) Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Res 61(12)Google Scholar
  82. Sconocchia G, Zlobec I, Lugli A, Calabrese D, Iezzi G, Karamitopoulou E, Patsouris ES et al (2011) Tumor infiltration by FcγRIII (CD16)+ myeloid cells is associated with improved survival in patients with colorectal carcinoma. Int J Cancer 128(11):2663–2672.  https://doi.org/10.1002/ijc.25609 CrossRefPubMedGoogle Scholar
  83. Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC (2002) G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17(4). Elsevier):413–423.  https://doi.org/10.1016/S1074-7613(02)00424-7 CrossRefPubMedGoogle Scholar
  84. Sharaiha RZ, Halazun KJ, Mirza F, Port JL, Lee PC, Neugut AI, Altorki NK, Abrams JA (2011) Elevated preoperative neutrophil:lymphocyte ratio as a predictor of postoperative disease recurrence in esophageal cancer. Ann Surg Oncol 18(12):3362–3369.  https://doi.org/10.1245/s10434-011-1754-8 CrossRefPubMedPubMedCentralGoogle Scholar
  85. Shimada H, Takiguchi N, Kainuma O, Soda H, Ikeda A, Cho A, Miyazaki A, Gunji H, Yamamoto H, Nagata M (2010) High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer 13(3):170–176.  https://doi.org/10.1007/s10120-010-0554-3 CrossRefPubMedGoogle Scholar
  86. Shime H, Matsumoto M, Seya T (2017) Double-stranded RNA promotes CTL-independent tumor cytolysis mediated by CD11b+Ly6G+ Intratumor myeloid cells through the TICAM-1 signaling pathway. Cell Death Differ 24(3):385–396.  https://doi.org/10.1038/cdd.2016.131 CrossRefPubMedGoogle Scholar
  87. Shojaei F, Wu X, Zhong C, Yu L, Liang X-H, Yao J, Blanchard D et al (2007) Bv8 regulates myeloid-cell-dependent tumor angiogenesis. Nature 450(7171):825–831.  https://doi.org/10.1038/nature06348 CrossRefPubMedGoogle Scholar
  88. Singhal S, Bhojnagarwala PS, O’Brien S, Moon EK, Garfall AL, Rao AS, Quatromoni JG et al (2016) Origin and role of a subset of tumor-associated neutrophils with antigen-presenting cell features in early-stage human lung cancer. Cancer Cell 30(1):120–135.  https://doi.org/10.1016/j.ccell.2016.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sippel TR, White J, Nag K, Tsvankin V, Marci K, Kleinschmidt-DeMasters BK, Waziri A (2011) Neutrophil degranulation and immunosuppression in patients with GBM: restoration of cellular immune function by targeting arginase I. Clin Cancer Res 17(22):6992–7002.  https://doi.org/10.1158/1078-0432.CCR-11-1107 CrossRefPubMedGoogle Scholar
  90. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M, Fessler E, Chen MB et al (2016) Neutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov 6(6):630–649.  https://doi.org/10.1158/2159-8290.CD-15-1157 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Takeshima T, Pop LM, Laine A, Iyengar P, Vitetta ES, Hannan R (2016) Key role for neutrophils in radiation-induced antitumor immune responses: potentiation with G-CSF. Proc Natl Acad Sci U S A 113(40):11300–11305.  https://doi.org/10.1073/pnas.1613187113 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Tsukuda M, Nagahara T, Yago T, Matsuda H, Yanoma S (1993) Production of granulocyte Colony-stimulating factor by head and neck carcinomas. Biotherapy 6(3):183–187CrossRefPubMedGoogle Scholar
  93. Ugel S, Peranzoni E, Desantis G, Chioda M, Walter S, Weinschenk T, Ochando JCC et al (2012) Immune tolerance to tumor antigens occurs in a specialized environment of the spleen. Cell Rep 2(3):628–639.  https://doi.org/10.1016/j.celrep.2012.08.006 CrossRefPubMedGoogle Scholar
  94. Waldron TJ, Quatromoni JG, Karakasheva TA, Singhal S, Rustgi AK (2013) Myeloid derived suppressor cells: targets for therapy. Oncoimmunology 2(4):e24117.  https://doi.org/10.4161/onci.24117 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Walsh SR, Cook EJ, Goulder F, Justin TA, Keeling NJ (2005) Neutrophil-lymphocyte ratio as a prognostic factor in colorectal cancer. J Surg Oncol 91(3):181–184.  https://doi.org/10.1002/jso.20329 CrossRefPubMedGoogle Scholar
  96. Wang T-t, Zhao Y-l, Peng L-s, Chen N, Chen W, Lv Y-p, Mao F-y et al (2017) Tumor-activated neutrophils in gastric cancer Foster immune suppression and disease progression through GM-CSF-PD-L1 pathway. Gut.  https://doi.org/10.1136/gutjnl-2016-313075
  97. Wculek SK, Malanchi I (2015) Neutrophils support lung colonization of metastasis-initiating breast cancer cells. Nature 528(7582):413–417.  https://doi.org/10.1038/nature16140 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Youn J-I, Gabrilovich DI (2010) The biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneity. Eur J Immunol 40(11). NIH Public Access):2969–2975.  https://doi.org/10.1002/eji.201040895 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Yu PF, Huang Y, Han YY, Lin LY, Sun WH, Rabson AB, Wang Y, Shi YF (2017) TNFα-activated mesenchymal stromal cells promote breast cancer metastasis by recruiting CXCR2+ neutrophils. Oncogene 36(4):482–490.  https://doi.org/10.1038/onc.2016.217 CrossRefPubMedGoogle Scholar
  100. Zhang H, Zhang L, Zhu K, Shi B, Yin Y, Zhu J, Yue D, Zhang B, Wang C (2015) Prognostic significance of combination of preoperative platelet count and neutrophil-lymphocyte ratio (COP-NLR) in patients with non-small cell lung cancer: based on a large cohort study. PLoS ONE 10(5):e0126496.  https://doi.org/10.1371/journal.pone.0126496 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Zhang J, Qiao X, Shi H, Han X, Liu W, Tian X, Zeng X (2016) Circulating tumor-associated neutrophils (cTAN) contribute to circulating tumor cell survival by suppressing peripheral leukocyte activation. Tumor Biol 37(4):5397–5404.  https://doi.org/10.1007/s13277-015-4349-3 CrossRefGoogle Scholar
  102. Zhu J, Huang X, Yang Y (2012) Myeloid-derived suppressor cells regulate natural killer cell response to adenovirus-mediated gene transfer. J Virol 86(24):13689–13696.  https://doi.org/10.1128/JVI.01595-12 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zou J-M, Qin J, Li Y-C, Wang Y, Li D, Shu Y, Luo C et al (2017) IL-35 induces N2 phenotype of neutrophils to promote tumor growth. Oncotarget 5(0).  https://doi.org/10.18632/oncotarget.16819

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andrea Rakic
    • 1
    • 2
    • 3
  • Paul Beaudry
    • 1
    • 2
    • 4
  • Douglas J. Mahoney
    • 1
    • 2
    • 5
    • 6
  1. 1.Alberta Children’s Hospital Research InstituteCalgaryCanada
  2. 2.Charbonneau Cancer Research InstituteCalgaryCanada
  3. 3.Department of Medical Sciences, Faculty of MedicineUniversity of CalgaryCalgaryCanada
  4. 4.Department of Pediatric Surgery, Faculty of MedicineUniversity of CalgaryCalgaryCanada
  5. 5.Department of Microbiology, Immunology and Infectious Disease, Faculty of MedicineUniversity of CalgaryCalgaryCanada
  6. 6.Department of Biochemistry and Molecular Biology, Faculty of MedicineUniversity of CalgaryCalgaryCanada

Personalised recommendations