Advertisement

Cell and Tissue Research

, Volume 372, Issue 3, pp 523–533 | Cite as

Evaluation of committed and primitive cord blood progenitors after expansion on adipose stromal cells

  • E. R. Andreeva
  • I. V. Andrianova
  • A. N. Gornostaeva
  • B. Sh. Gogiya
  • L. B. Buravkova
Regular Article

Abstract

Umbilical cord blood mononuclear fraction is a valuable source of hematopoietic stem and progenitor cells (CB HSPCs). The rarity of this population is a serious limitation of its application in cell therapy. Ex vivo expansion enables to significantly amplify the number of hematopoietic precursors of different commitment. Here, we expand CB MNCs in co-culture with human adipose tissue-derived stromal cells (ASCs) to enrich HSPCs and describe phenotypic features of newly formed hematopoietic populations. The CD34+-HSPCs demonstrated 6-fold enrichment with 9000 CFUs per 50 × 103 HSPCs on average. A part of the floating HSPCs were bearing lineage markers, while others were primitive precursors (CD133/CD34+). Among ASC-associated HSPCs, two subsets of cord blood-borne cells were revealed: СD90+/СD45 and СD90+/СD45+. The proportion of CD3+/CD8+ and NK-T as well as CD25+ and HLA-DR+ Т cells among СD90+/СD45 cells was significantly higher compared to MNCs and floating HSPCs. More than 80% of CD45+/СD90+ HSPCs were identified as late primitive precursors (CD133/CD34+). Thus, CB MNC expansion in the presence of ASCs provides the generation of both lineage committed lymphoid progenitors and CD34+/CD133 primitive HSPCs. Substantially enriched with primitive precursors, ASC-associated HSPCs could be considered as a perspective tool for a long-term restoration of hematopoiesis in various hematologic disorders.

Keywords

Cord blood hematopoietic stem and progenitor cells (CB HSPCs) Adipose tissue-derived stromal cells (ASCs) Co-cultivation Stroma-asscociated HSPCs HSPC phenotyping 

Notes

Acknowledgements

This work was financially supported in part by the BRMT Program of Presidium of RAS and a grant from the President of the Russian Federation SP-3502.2015.4.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

441_2017_2766_MOESM1_ESM.pdf (253 kb)
ESM 1 (PDF 253 kb)

References

  1. Andrade PZ, de Soure AM, Dos Santos F, Paiva A, Cabral JM, da Silva CL (2015) Ex vivo expansion of cord blood haematopoietic stem/progenitor cells under physiological oxygen tensions: clear-cut effects on cell proliferation, differentiation and metabolism. J Tissue Eng Regen Med 9(10):1172–1181CrossRefPubMedGoogle Scholar
  2. Andreeva ER, Andrianova IV, Bobyleva PI, Gornostaeva AN, Buravkova LB (2013) Human lymphocyte immunophenotype after interaction with mesenchymal stromal cells. Hum Physiol 39(5):530–534CrossRefGoogle Scholar
  3. Andreeva ER, Andrianova IV, Sotnezova EV, Buravkov SV, Bobyleva PI, Romanov YA, Buravkova LB (2015) Human adipose-tissue derived stromal cells in combination with hypoxia effectively support ex vivo expansion of cord blood haematopoietic progenitors. PLoS ONE 10(4):e0124939.  https://doi.org/10.1371/journal.pone.0124939 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Azouna NB, Berraeis L, Regaya Z, Jenhani F (2011) Immunophenotyping of hematopoietic progenitor cells: comparison between cord blood and adult mobilized blood grafts. World J Stem Cells 3(11):104–112CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barker JN, Weisdorf DJ, Wagner JE (2001) Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N Engl J Med 344:1870–1871CrossRefPubMedGoogle Scholar
  6. Basford C, Forraz N, McGuckin C (2010) Optimized multiparametric immunophenotyping of umbilical cord blood cells by flow cytometry. Nat Protoc 5(7):1337–1346CrossRefPubMedGoogle Scholar
  7. Briddell RA, Kern BP, Zilm KL, Stoney GB, McNiece IK (1997) Purification of CD34+ cells is essential for optimal ex vivo expansion of umbilical cord blood cells. J Hematother 6:145–150CrossRefPubMedGoogle Scholar
  8. Broxmeyer HE (2005) Biology of cord blood cells and future prospects for enhanced clinical benefit. Cytotherapy 7(3):209–218CrossRefPubMedGoogle Scholar
  9. Brunstein CG, Wagner JE (2006) Cord blood transplantation for adults. Vox Sang 91:195–205CrossRefPubMedGoogle Scholar
  10. Buravkova LB, Grinakovskaia OS, Andreeva EP, Zhambalova AP, Kozionova MP (2009) Characteristics of human lipoaspirate-isolated mesenchymal stromal cells cultivated under a lower oxygen tension. Tsitologiia 51(1):5–11PubMedGoogle Scholar
  11. Buravkova LB, Rylova YV, Andreeva ER, Kulikov AV, Pogodina MV, Zhivotovsky B, Gogvadze V (2013) Low ATP level is sufficient to maintain the uncommitted state of multipotent mesenchymal stem cells. Biochim Biophys Acta 1830(10):4418–4425CrossRefPubMedGoogle Scholar
  12. Carreau AE, Hafny-Rahbi B, Matejuk A, Grillon C, Kieda C (2011) Why is the partial oxygen pressure of human tissues a crucial parameter. Small molecules and hypoxia. J Cell Mol Med 15(6):1239–1253CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chirumbolo S, Ortolani R, Veneri D, Raffaelli R, Peroni D, Pigozzi R, Colombatti M, Vella A (2011) Lymphocyte phenotypic subsets in umbilical cord blood compared to peripheral blood from related mothers. Cytometry B 80(4):248–253CrossRefGoogle Scholar
  14. da Silva CL, Gonçalves R, Dos Santos F, Andrade PZ, Almeida-Porada G, Cabral JM (2010) Dynamic cell-cell interactions between cord blood haematopoietic progenitors and the cellular niche are essential for the expansion of CD34+, CD34+CD38- and early lymphoid CD7+ cells. J Tissue Eng Regen Med 4(2):149–158CrossRefPubMedGoogle Scholar
  15. D'Arena G, Musto P, Cascavilla N, Di Giorgio G, Fusilli S, Zendoli F, Carotenuto M (1998) Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica 83(3):197–203PubMedGoogle Scholar
  16. de Haan G, Van Zant G (1997) Intrinsic and extrinsic control of hemopoietic stem cell numbers: mapping of a stem cell gene. J Exp Med 186(4):529–536CrossRefPubMedPubMedCentralGoogle Scholar
  17. De Wynter EA, Buck D, Hart C, Heywood R, Coutinho LH, Clayton A, Rafferty JA, Burt D, Guenechea G, Bueren JA, Gagen D, Fairbairn LJ, Lord BI, Testa NG (1998) CD34+AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. Stem Cells 16:387–396Google Scholar
  18. Delalat B, Pourfathollah AA, Soleimani M, Mozdarani H, Ghaemi SR, Movassaghpour AA, Kaviani S (2009) Isolation and ex vivo expansion of human umbilical cord blood-derived CD34+ stem cells and their cotransplantation with or without mesenchymal stem cells. Hematology 14(3):125–132CrossRefPubMedGoogle Scholar
  19. Dexter TM, Allen TD, Lajtha LG, Krisza F, Testa NG, Moore MAS (1978) In vitro analysis of self renewal and commitment of hematopoietic stem cells. In: Clarkson B, Marks PA, Till JE (eds) Differentiation of normal and Neoplastic hematopoietic cells. Cold Spring Harbor Publications, Cold Spring Harbor, New York, pp 63–80Google Scholar
  20. Dexter TM, Simmons P, Purnell RA, Spooncer E, Schofield R (1984) The regulation of hemopoietic cell development by the stromal cell environment and diffusible regulatory molecules. Prog Clin Biol Res 148:13–33PubMedGoogle Scholar
  21. Fernandez MN, Granena A, Millan I, Regidor C, Cabrera R, Querol S, Garcia J (2000) Evaluation of engraftment of ex vivo expanded cord blood cells in humans. Bone Marrow Transplant 25(Suppl 2):61–67CrossRefGoogle Scholar
  22. Flores-Guzmán P, Fernández-Sánchez V, Mayani H (2013) Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine. Stem Cells Transl Med 2(11):830–838CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gluckman E, Ruggeri A, Rocha V, Baudoux E, Boo M, Kurtzberg J, Welte K, Navarrete C, van Walraven SM (2011) Eurocord, Netcord, world marrow donor association and National Marrow Donor Program. Family-directed umbilical cord blood banking. Haematologica 96(11):1700–1707CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hofmeister CC, Zhang J, Knight KL, Le P, Stiff PJ (2007) Ex vivo expansion of umbilical cord blood stem cells for transplantation: growing knowledge from the hematopoietic niche. Bone Marrow Transplant 39(1):11–23CrossRefPubMedGoogle Scholar
  25. Ivanovic Z (2009) Hypoxia or in situ normoxia: the stem cell paradigm. J Cell Physiol 219:271–275CrossRefPubMedGoogle Scholar
  26. Jang YK, Jung DH, Jung MH, Kim DH, Yoo KH, Sung KW, Koo HH, Oh W, Yang YS, Yang SE (2006) Mesenchymal stem cells feeder layer from human umbilical cord blood for ex vivo expanded growth and proliferation of hematopoietic progenitor cells. Ann Hematol 85(4):212–225CrossRefPubMedGoogle Scholar
  27. Jing D, Fonseca AV, Alakel N, Fierro FA, Muller K, Bornhauser M, Ehninger G, Corbeil D, Ordemann R (2010) Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitro. Haematologica 95(6):542–550CrossRefPubMedPubMedCentralGoogle Scholar
  28. Koller MR, Manchel I, Newsom BS, Palsson MA, Palsson BO (1995) Bioreactor expansion of human bone marrow: comparison of unprocessed, density-separated, and CD34-enriched cells. J Hematother 4(3):159–169CrossRefPubMedGoogle Scholar
  29. Lopez MC, Palmer BE, Lawrence DA (2009) Phenotypic differences between cord blood and adult peripheral blood. Cytometry B 76(1):37–46CrossRefGoogle Scholar
  30. Maslova EV, Andreeva ER, Andrianova IV, Bobyleva PI, Romanov YA, Kabaeva NV, Balashova EE, Ryaskina SS, Dugina TN, Buravkova LB (2014) Enrichment of umbilical cord blood mononuclears with hemopoietic precursors in co-culture with mesenchymal stromal cells from human adipose tissue. Bull Exp Biol Med 156(4):584–589CrossRefPubMedGoogle Scholar
  31. McGuckin CP, Pearce D, Forraz N, Tooze JA, Watt SM, Pettengell R (2003) Multiparametric analysis of immature cell populations in umbilical cord blood and bone marrow. Eur J Haematol 71(5):341–350CrossRefPubMedGoogle Scholar
  32. Richel DJ, Johnsen HE, Canon J, Guillaume T, Schaafsma MR, Schenkeveld C, Hansen SW, McNiece I, Gringeri AJ, Briddell R, Ewen C, Davies R, Freeman J, Miltenyi S, Symann M (2000) Highly purified CD34+ cells isolated using magnetically activated cell selection provide rapid engraftment following high-dose chemotherapy in breast cancer patients. Bone Marrow Transplant 25(3):243–249CrossRefPubMedGoogle Scholar
  33. Romanov YA, Tarakanov OP, Radaev SM, Dugina TN, Ryaskina SS, Darevskaya AN, Morozova YV, Khachatryan WA, Lebedev KE, Zotova NS, Burkova AS, Sukhikh GT, Smirnov VN (2015) Human allogeneic AB0/Rh-identical umbilical cord blood cells in the treatment of juvenile patients with cerebral palsy. Cytotherapy 17(7):969–978CrossRefPubMedGoogle Scholar
  34. Roura S, Pujal JM, Gálvez-Montón C, Bayes-Genis A (2015) The role and potential of umbilical cord blood in an era of new therapies. Stem Cell Res Ther 6(1):123–134CrossRefPubMedPubMedCentralGoogle Scholar
  35. Song Y, Bahnson A, Hall N, Yu H, Shen H, Koebler D, Houck R, Xie Y, Cheng T (2010) Stem cell traits in long-term co-culture revealed by time-lapse imaging. Leukemia 24(1):153–161CrossRefPubMedGoogle Scholar
  36. Sotnezova EV, Andreeva ER, Grigoriev AI, Buravkova LB (2016) Ex vivo expansion of hematopoietic stem and progenitor cells from umbilical cord blood. Acta Nat 8(3):6–16Google Scholar
  37. Tsegaye A, Wolday D, Otto S, Petros B, Assefa T, Alebachew T, Hailu E, Adugna F, Measho W, Dorigo W, Fontanet AL, van Baarle D, Miedema F (2003) Immunophenotyping of blood lymphocytes at birth, during childhood, and during adulthood in HIV-1-uninfected Ethiopians. Clin Immunol 109(3):338–346CrossRefPubMedGoogle Scholar
  38. van Os RP, Dethmers-Ausema B, de Haan G (2008) In vitro assays for cobblestone area-forming cells, LTC-IC, and CFU-C. Methods Mol Biol 430:143–157CrossRefPubMedGoogle Scholar
  39. Wagner W, Wein F, Roderburg C, Saffrich R, Faber A, Krause U, Schubert M, Benes V, Ecksteina V, Maul H, Ho AD (2007) Adhesion of hematopoietic progenitor cells to mesenchymal stem cells as a model for cell-cell interaction. Exp Hematol 35(2):314–325CrossRefPubMedGoogle Scholar
  40. Zanjani ED, Almeida-Porada G, Livingston AG, Zeng H, Ogawa M (2003) Reversible expression of CD34 by adult human bone marrow long-term engrafting hematopoietic stem cells. Exp Hematol 31(5):406–412CrossRefPubMedGoogle Scholar
  41. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–218CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • E. R. Andreeva
    • 1
  • I. V. Andrianova
    • 1
  • A. N. Gornostaeva
    • 1
  • B. Sh. Gogiya
    • 2
  • L. B. Buravkova
    • 1
  1. 1.Cell Physiology Lab, Institute of Biomedical ProblemsRussian Academy of SciencesMoscowRussia
  2. 2.Department of Herniology and Plastic SurgeryA. V. Vishnevsky Institute of SurgeryMoscowRussia

Personalised recommendations