Skip to main content

Advertisement

Log in

Spatial memory tasks in rodents: what do they model?

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adolphs R, Tranel D, Buchanan TW (2005) Amygdala damage impairs emotional memory for gist but not details of complex stimuli. Nat Neurosci 8:512–518

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP, Neave N, Nagle S, Sahgal A (1995) A comparison of the effects of medial prefrontal, cingulate cortex, and cingulum bundle lesions on tests of spatial memory: evidence of a double dissociation between frontal and cingulum bundle contributions. J Neurosci 15:7270–7281

    PubMed  CAS  Google Scholar 

  • Almkvist O, Winblad B (1999) Early diagnosis of Alzheimer dementia based on clinical and biological factors. Eur Arch Psychiatry Clin Neurosci 249(Suppl 3):3–9

    Article  PubMed  Google Scholar 

  • Anderson JR (1976) Language, memory, and thought. Erlbaum, Hillsdale

    Google Scholar 

  • Atkinson RC, Shiffrin RM (1968) Human memory: a proposed system and its control processes. In: Spence KW, Spence JT (eds) The psychology of learning and motivation, vol 2. Academic Press, Oxford, pp 89–195

    Google Scholar 

  • Baddeley A (1992) Working memory. Science 255:556–559

    Article  PubMed  CAS  Google Scholar 

  • Baddeley AD, Warrington EK (1970) Amnesia and the distinction between long- and short-term memory. J Verbal Learn Verbal Behav 9:176–189

    Article  Google Scholar 

  • Bannerman DM, Good MA, Butcher SP, Ramsay M, Morris RGM (1995) Distinct components of spatial learning revealed by prior training and NMDA receptor blockade. Nature 378:182–186

    Article  PubMed  CAS  Google Scholar 

  • Bannerman DM, Yee BK, Good MA, Heupel MJ, Iversen SD, Rawlins JN (1999) Double dissociation of function within the hippocampus: a comparison of dorsal, ventral, and complete hippocampal cytotoxic lesions. Behav Neurosci 113:1170–1178

    Article  PubMed  CAS  Google Scholar 

  • Barch DM, Ceaser A (2012) Cognition in schizophrenia: core psychological and neural mechanisms. Trends Cogn Sci 6:27–34

    Article  Google Scholar 

  • Barkley RA (1997) Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull 121:65–94

    Article  PubMed  CAS  Google Scholar 

  • Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio AR (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Becker JT, Morris RG (1999) Working memory(s). Brain Cogn 41:1–8

    Article  PubMed  CAS  Google Scholar 

  • Benus RF, Bohus B, Koolhaas JM, Oortmerssen GA von (1989) Behavioural strategies of aggressive and non-aggressive male mice in active shock avoidance. Behav Process 20:1–12

    Google Scholar 

  • Boyer P, Phillips JL, Rousseau FL, Ilivitsky S (2007) Hippocampal abnormalities and memory deficits: new evidence of a strong pathophysiological link in schizophrenia. Brain Res Rev 54:92–112

    Article  PubMed  CAS  Google Scholar 

  • Brandewiede J, Schachner M, Morellini F (2005) Ethological analysis of the senescence-accelerated P/8 mouse. Behav Brain Res 158:109–121

    Article  PubMed  CAS  Google Scholar 

  • Burgess N, Maguire EA, O'Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641

    Article  PubMed  CAS  Google Scholar 

  • Buzsáki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16:130–138

    Article  PubMed  CAS  Google Scholar 

  • Cahill L, Babinsky R, Markowitsch HJ, McGaugh JL (1995) The amygdala and emotional memory. Nature 377:295–296

    Article  PubMed  CAS  Google Scholar 

  • Cain DP (1998) Testing the NMDA, long-term potentiation, and cholinergic hypotheses of spatial learning. Neurosci Biobehav Rev 22:181–193

    Article  PubMed  CAS  Google Scholar 

  • Cave C, Squire LR (1992) Intact verbal and nonverbal short-term memory following damage to the human hippocampus. Hippocampus 2:151–163

    Article  PubMed  CAS  Google Scholar 

  • Chen G, Chen KS, Knox J, Inglis J, Bernard A, Martin SJ, Justice A, McConlogue L, Games D, Freedman SB, Morris RG (2000) A learning deficit related to age and beta-amyloid plaques in a mouse model of Alzheimer's disease. Nature 408:975–979

    Article  PubMed  CAS  Google Scholar 

  • Cheng K (1986) A purely geometric module in the rat’s spatial representation. Cognition 23:149–178

    Article  PubMed  CAS  Google Scholar 

  • Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395:272–278

    Article  PubMed  CAS  Google Scholar 

  • Clayton NS, Yu KS, Dickinson A (2003) Interacting cache memories: evidence of flexible memory use by scrub jays. J Exp Psychol Anim Behav Process 29:1–22

    Article  Google Scholar 

  • Cohen JD, Perlstein WM, Braver TS, Nystrom LE, Noll DC, Jonides J, Smith EE (1997) Temporal dynamics of brain activation during a working memory. Nature 386:604–608

    Article  PubMed  CAS  Google Scholar 

  • Cohen NJ, Eichenbaum H (1993) Memory amnesia and the hippocampal system. MIT Press, Cambridge

    Google Scholar 

  • Cole MR, Chappell-Stephenson R (2003) Exploring the limits of spatial memory using very large mazes. Learn Behav 31:349–368

    Article  PubMed  Google Scholar 

  • Corkin S (2002) What's new with the amnesic patient H.M.? Nat Rev Neurosci 3:153–160

    Article  PubMed  CAS  Google Scholar 

  • Deacon RM, Bannerman DM, Kirby BP, Croucher A, Rawlins JN (2002) Effects of cytotoxic hippocampal lesions in mice on a cognitive test battery. Behav Brain Res 133:57–68

    Article  PubMed  Google Scholar 

  • Deacon RM, Penny C, Rawlins JN (2003) Effects of medial prefrontal cortex cytotoxic lesions in mice. Behav Brain Res 139:139–155

    Article  PubMed  Google Scholar 

  • Dere E, Huston JP, De Souza Silva MA (2005) Episodic-like memory in mice: simultaneous assessment of object, place and temporal order memory. Brain Res Protocol 16:10–19

    Article  Google Scholar 

  • D'Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  • Drachman DA, Arbit J (1966) Memory and the hippocampal complex. II. Is memory a multiple process? Arch Neurol 15:52–61

    Article  PubMed  CAS  Google Scholar 

  • Drago V, Babiloni C, Bartrés-Faz D, Caroli A, Bosch B, Hensch T, Didic M, Klafki HW, Pievani M, Jovicich J, Venturi L, Spitzer P, Vecchio F, Schoenknecht P, Wiltfang J, Redolfi A, Forloni G, Blin O, Irving E, Davis C, Hårdemark HG, Frisoni GB (2011) Disease tracking markers for Alzheimer's disease at the prodromal (MCI) stage. J Alzheimers Dis 26:159–199

    PubMed  Google Scholar 

  • Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51–86

    Article  PubMed  Google Scholar 

  • Dudchenko PA (2004) An overview of the tasks used to test working memory in rodents. Neurosci Biobehav Rev 28:699–709

    Article  PubMed  Google Scholar 

  • Dusek JA, Eichenbaum H (1997) The hippocampus and memory for orderly stimulus relations. Proc Natl Acad Sci USA 94:7109–7171

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum H (2001) The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav Brain Res 127:199–207

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum H, Dusek J, Young B, Bunsey M (1996) Neural mechanisms of declarative memory. Cold Spring Harb Symp Quant Biol 61:197–206

    Article  PubMed  CAS  Google Scholar 

  • Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H (1999) The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23:209–226

    Article  PubMed  CAS  Google Scholar 

  • Elgh E, Domellof M, Linder J, Edstrom M, Stenlund H, Forsgren L (2009) Cognitive function in early Parkinson's disease: a population-based study. Eur J Neurol 16:1278–1284

    Article  PubMed  CAS  Google Scholar 

  • Evers MR, Salmen B, Bukalo O, Rollenhagen A, Bösl MR, Morellini F, Bartsch U, Dityatev A, Schachner M (2002) Impairment of L-type Ca2+ channel-dependent forms of hippocampal synaptic plasticity in mice deficient in the extracellular matrix glycoprotein tenascin-C. J Neurosci 22:7177–7194

    PubMed  CAS  Google Scholar 

  • Eysenck MW (1988) Models of memory: information processing. Psychopharmacol Ser 6:3–11

    PubMed  CAS  Google Scholar 

  • Fellini L, Morellini F (2011) Geometric information is required for allothetic navigation in mice. Behav Brain Res 222:380–384

    Article  PubMed  Google Scholar 

  • Fellini L, Morellini F (2013) Mice create what-where-when hippocampus-dependent memories of unique experiences. J Neurosci 33:1038–1043

    Article  PubMed  CAS  Google Scholar 

  • Fellini L, Schachner M, Morellini F (2006) Adult but not aged C57BL/6 male mice are capable of using geometry for orientation. Learn Mem 13:473–481

    Article  PubMed  Google Scholar 

  • Förstl H, Kurz A (1999) Clinical features of Alzheimer's disease. Eur Arch Psychiatry Clin Neurosci 249:288–290

    Article  PubMed  Google Scholar 

  • Fuster JM, Bauer RH, Jervey JP (1982) Cellular discharge in the dorsolateral prefrontal cortex of the monkey in cognitive tasks. Exp Neurol 77:679–694

    Article  PubMed  CAS  Google Scholar 

  • Gabrieli J, Kao Y (2007) Development of the declarative memory system in the human brain. Nat Neurosci 10:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Gazzaley A, Cooney JW, McEvoy K, Knight RT, D’Esposito M (2005) Top-down enhancement and suppression of the magnitude and speed of neural activity. J Cogn Neurosci 17:507–517

    Article  PubMed  Google Scholar 

  • Gerlai R (1998) A new continuous alternation task in a T-maze detects hippocampal dysfunction in mice: a strain comparison and lesion study. Behav Brain Res 95:91–101

    Article  PubMed  CAS  Google Scholar 

  • Gerlai R (2001) Behavioral tests of hippocampal function: simple paradigms complex problems. Behav Brain Res 125:269–277

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci 6:348–357

    PubMed  CAS  Google Scholar 

  • Graham KS, Barense MD, Lee ACH (2010) Going beyond LTM in the MTL: a synthesis of neuropsychological and neuroimaging findings on the role of the medial temporal lobe in memory and perception. Neuropsychologia 48:831–853

    Article  PubMed  Google Scholar 

  • Griffiths D, Whalsten D (1974) Interacting effects of handling and D-amphetamine on avoidance learning. Pharmacol Biochem Behav 2:439–444

    Article  PubMed  CAS  Google Scholar 

  • Griffiths DP, Dickinson A, Clayton NS (1999) Declarative and episodic memory: what can animals remember about their past? Trends Cogn Sci 3:74–80

    Article  PubMed  Google Scholar 

  • Hasselmo ME (2012) How we remember: brain mechanisms of episodic memory. MIT Press, Cambridge

    Google Scholar 

  • Hodges H (1996) Maze procedures: the radial-arm and water maze compared. Brain Res Cogn Brain Res 3:167–168

    Article  PubMed  CAS  Google Scholar 

  • Huber SJ, Paulson GW (1985) The concept of subcortical dementia. Am J Psychiatry 142:1312–1317

    PubMed  CAS  Google Scholar 

  • Hughes RN (2004) The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev 28:497–505

    Article  PubMed  CAS  Google Scholar 

  • Jakovcevski M, Schachner M, Morellini F (2008) Individual variability in the stress response of C57BL/6J male mice correlates with trait anxiety. Genes Brain Behav 7:235–243

    Article  PubMed  CAS  Google Scholar 

  • Jakovcevski M, Schachner M, Morellini F (2011) Susceptibility to the long-term anxiogenic effects of an acute stressor is mediated by the activation of the glucocorticoid receptors. Neuropharmacology 61:1297–1305

    Article  PubMed  CAS  Google Scholar 

  • Kenworthy L, Yerys BE, Anthony LG, Wallace GL (2008) Understanding executive control in autism spectrum disorders in the lab and in the real world. Neuropsychol Rev 18:320–338

    Article  PubMed  Google Scholar 

  • Kesner RP, Churchwell JC (2011) An analysis of rat prefrontal cortex in mediating executive function. Neurobiol Learn Mem 96:417–431

    Article  PubMed  Google Scholar 

  • Knierim JJ, Hamilton DA (2011) Framing spatial cognition: neural representations of proximal and distal frames of reference and their roles in navigation. Physiol Rev 91:1245–1279

    Article  PubMed  Google Scholar 

  • Knowlton BJ, Mangels JA, Squire LR (1996) A neostriatal habit learning system in humans. Science 273:1399–1402

    Article  PubMed  CAS  Google Scholar 

  • Law JW, Lee AY, Sun M, Nikonenko AG, Chung SK, Dityatev A, Schachner M, Morellini F (2003) Decreased anxiety, altered place learning, and increased CA1 basal excitatory synaptic transmission in mice with conditional ablation of the neural cell adhesion molecule L1. J Neurosci 23:10419–10432

    PubMed  CAS  Google Scholar 

  • Lenck-Santini PP, Save E, Poucet B (2001) Place-cell firing does not depend on the direction of turn in a Y-maze alternation task. Eur J Neurosci 13:1055–1058

    Article  PubMed  CAS  Google Scholar 

  • Lipp HP, Wolfer DP (1998) Genetically modified mice and cognition. Curr Opin Neurobiol 8:272–280

    Article  PubMed  CAS  Google Scholar 

  • Liston C, Malter Cohen M, Teslovich T, Levenson D, Casey BJ (2011) Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: pathway to disease or pathological end point? Biol Psychiatry 69:1168–1177

    Article  PubMed  Google Scholar 

  • Maei HR, Zaslavsky K, Teixeira CM, Frankland PW (2009) What is the most sensitive measure of water maze probe test performance? Front Integr Neurosci 3:4

    PubMed  Google Scholar 

  • Manns JR, Hopkins RO, Reed JM, Kitchener EG, Squire LR (2003) Recognition memory and the human hippocampus. Neuron 37:171–180

    Article  PubMed  CAS  Google Scholar 

  • McClelland JL, McNaughton BL, O’Reilly RC (1995) Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychiatr Rev 102:419–457

    CAS  Google Scholar 

  • McGaugh JL (2000) Memory—a century of consolidation. Science 287:248–251

    Article  PubMed  CAS  Google Scholar 

  • McIntyre JS, Craik FI (1987) Age differences in memory for item and source information. Can J Psychol 41:175–192

    Article  PubMed  CAS  Google Scholar 

  • McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, Knierim JJ, Kudrimoti H, Qin Y, Skaggs WE, Suster M, Weaver KL (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol 199:173–185

    PubMed  CAS  Google Scholar 

  • McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the “cognitive map”. Nat Rev Neurosci 7:663–678

    Article  PubMed  CAS  Google Scholar 

  • Meier I, Fellini L, Jakovcevski M, Schachner M, Morellini F (2010) Expression of the snoRNA host gene gas5 in the hippocampus is upregulated by age and psychogenic stress and correlates with reduced novelty-induced behavior in C57BL/6 mice. Hippocampus 20:1027–1036

    Article  PubMed  CAS  Google Scholar 

  • Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97

    Article  PubMed  CAS  Google Scholar 

  • Miller DB, O'Callaghan JP (2005) Aging, stress and the hippocampus. Ageing Res Rev 4:123–140

    Article  PubMed  CAS  Google Scholar 

  • Milner B (1972) Disorders of learning and memory after temporal lobe lesions in man. Clin Neur 19:421–466

    CAS  Google Scholar 

  • Morellini F, Schachner M (2006) Enhanced novelty-induced activity, reduced anxiety, delayed resynchronization to daylight reversal and weaker muscle strength in tenascin-C-deficient mice. Eur J Neurosci 23:1255–1268

    Article  PubMed  Google Scholar 

  • Morellini F, Sivukhina E, Stoenica L, Oulianova E, Bukalo O, Jakovcevski I, Dityatev A, Irintchev A, Schachner M (2010) Improved reversal learning and working memory and enhanced reactivity to novelty in mice with enhanced GABAergic innervation in the dentate gyrus. Cereb Cortex 20:2712–2727

    Article  PubMed  Google Scholar 

  • Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 2:239–260

    Article  Google Scholar 

  • Morris RGM (1989) Synaptic plasticity and learning: selective impairment of learning in rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9:3040–3057

    PubMed  CAS  Google Scholar 

  • Morris RG (2001) Episodic-like memory in animals: psychological criteria, neural mechanisms and the value of episodic-like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond Biol 356:1453–1465

    Article  PubMed  CAS  Google Scholar 

  • Morris RG, Baddeley AD (1988) Primary and working memory functioning in Alzheimer-type dementia. J Clin Exp Neuropsychol 10:279–296

    Article  PubMed  CAS  Google Scholar 

  • Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article  PubMed  CAS  Google Scholar 

  • Morris RG, Schenk F, Tweedie F, Jarrard LE (1990) Ibotenate lesions of hippocampus and/or subiculum: dissociating components of allocentric spatial learning. Eur J Neurosci 2:1016–1028

    Article  PubMed  Google Scholar 

  • Nadel L, Moscovitch M (1997) Memory consolidation, retrograde amnesia and the hippocampal complex. Curr Opin Neurobiol 7:217–227

    Article  PubMed  CAS  Google Scholar 

  • Nagao S, Kitazawa H (2008) Role of the cerebellum in the acquisition and consolidation of motor memory. Brain Nerve 60:783–790

    PubMed  Google Scholar 

  • O'Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Oxford University Press, New York

    Google Scholar 

  • Olton DS, Samuelson RJ (1976) Remembrance of places passed: spatial memory in rats. J Exp Psychol Anim Behav Process 2:97–116

    Article  Google Scholar 

  • Olton DS, Collison C, Werz MA (1977) Spatial memory and radial arm maze performance of rats. Learn Motiv 8:289–314

    Article  Google Scholar 

  • Pagonabarraga J, Kulisevsky J (2012) Cognitive impairment and dementia in Parkinson's disease. Neurobiol Dis 46:590–596

    Article  PubMed  Google Scholar 

  • Paulesu E, Frith CD, Frackowiak RS (1993) The neural correlates of the verbal component of working memory. Nature 362:342–345

    Article  PubMed  CAS  Google Scholar 

  • Ramos JMJ (2000) Influence of the shape of the experimental room on spatial learning in rats. Physiol Behav 70:351–357

    Article  PubMed  CAS  Google Scholar 

  • Ranganath C, Cohen MX, Dam C, D'Esposito M (2004) Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval. J Neurosci 24:3917–3925

    Article  PubMed  CAS  Google Scholar 

  • Roberts WW, Dember WN, Brodwick M (1962) Alternation and exploration in rats with hippocampal lesions. J Comp Physiol Psychol 55:695–700

    Article  PubMed  CAS  Google Scholar 

  • Rowe JB, Toni I, Josephs O, Frackowiak RSJ, Passingham RE (2000) The prefrontal cortex: response selection or maintenance with working memory? Science 288:1656–1660

    Article  PubMed  CAS  Google Scholar 

  • Salmon DP, Butters N (1995) Neurobiology of skill and habit learning. Curr Opin Neurobiol 5:184–190

    Article  PubMed  CAS  Google Scholar 

  • Sanderson DJ, Bannerman DM (2012) The role of habituation in hippocampus-dependent spatial working memory tasks: evidence from GluA1 AMPA receptor subunit knockout mice. Hippocampus 22:981–994

    Article  PubMed  CAS  Google Scholar 

  • Scolville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21

    Article  Google Scholar 

  • Smith EE, Jonides J (1997) Working memory: a view from neuroimaging. Cogn Psychol 33:5–42

    Article  PubMed  CAS  Google Scholar 

  • Smith EE, Jonides J (1998) Neuroimaging analyses of human working memory. Proc Natl Acad Sci USA 95:12061–12068

    Article  PubMed  CAS  Google Scholar 

  • Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99:195–231

    Article  PubMed  CAS  Google Scholar 

  • Squire LR, Zola SM (1996) Structure and function of declarative and nondeclarative memory systems. Proc Natl Acad Sci USA 93:13515–13522

    Article  PubMed  CAS  Google Scholar 

  • Staddon JE (1984) Time and memory. Ann N Y Acad Sci 423:322–334

    Article  PubMed  CAS  Google Scholar 

  • Steele RJ, Morris RG (1999) Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9:118–136

    Article  PubMed  CAS  Google Scholar 

  • Stella F, Cerasti E, Si B, Jezek K, Treves A (2012) Self-organization of multiple spatial and context memories in the hippocampus. Neurosci Biobehav Rev 36:1609–1625

    Article  PubMed  Google Scholar 

  • Stretton J, Thompson PJ (2012) Frontal lobe function in temporal lobe epilepsy. Epilepsy Res 8:1–13

    Article  Google Scholar 

  • Thompson E, Varela FJ (2001) Radical embodiment: neural dynamics and consciousness. Trends Cogn Sci 5:418–425

    Article  PubMed  Google Scholar 

  • Thopmson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73:16–43

    Article  Google Scholar 

  • Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55:189–208

    Article  PubMed  CAS  Google Scholar 

  • Tolman EC, Ritchie BF, Kalish D (1946) Studies in spatial learning. I. Orientation and the short-cut. J Exp Psychol 36:13–24

    Article  PubMed  CAS  Google Scholar 

  • Tulving E (1972) Episodic and semantic memory. In: Tulving E, Donaldson W (eds) Organization of Memory. Academic Press, New York, pp 381–403

    Google Scholar 

  • Tulving E (2002) Episodic memory: from mind to brain. Annu Rev Psychol 53:1–25

    Article  PubMed  Google Scholar 

  • Van Dam D, Lenders G, De Deyn PP (2006) Effect of Morris water maze diameter on visual-spatial learning in different mouse strains. Neurobiol Learn Mem 85:164–172

    Article  PubMed  Google Scholar 

  • van Os J, Kapur S (2009) Schizophrenia. Lancet 374:635–645

    Article  PubMed  CAS  Google Scholar 

  • Wang SH, Morris RG (2010) Hippocampal-neocortical interactions in memory formation, consolidation, and reconsolidation. Annu Rev Psychol 61:49–79

    Article  PubMed  Google Scholar 

  • Whishaw IQ (1989) Dissociating performance and learning deficits on spatial navigation tasks in rats subjected to cholinergic muscarinic blockade. Brain Res Bull 23:347–358

    Article  PubMed  CAS  Google Scholar 

  • Whishaw IQ, Cassel JC, Jarrad LE (1995) Rats with fimbria-fornix lesions display a place response in a swimming pool: a dissociation between getting there and knowing where. J Neurosci 15:5779–5788

    PubMed  CAS  Google Scholar 

  • Wolfer DP, Lipp HP (2000) Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment? Exp Physiol 85:627–634

    Article  PubMed  CAS  Google Scholar 

  • Wolfer DP, Madani R, Valenti P, Lipp HP (2001) Extended analysis of path data from mutant mice using the public domain software Wintrack. Physiol Behav 73:745–753

    Article  PubMed  CAS  Google Scholar 

  • Zhou W, Crystal JD (2009) Evidence for remembering when events occurred in a rodent model of episodic memory. Proc Natl Acad Sci USA 101:9525–9529

    Article  Google Scholar 

Download references

Acknowledgments

The author’s work is supported by the Deutsche Forschungsgemeinschaft, SFB 936 “Multi-Site Communication in the Brain”, project B3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Morellini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morellini, F. Spatial memory tasks in rodents: what do they model?. Cell Tissue Res 354, 273–286 (2013). https://doi.org/10.1007/s00441-013-1668-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-013-1668-9

Keywords

Navigation