Skip to main content

Advertisement

Log in

Expression of Trisk 51, agrin and nicotinic-acetycholine receptor ε-subunit during muscle development in a novel three-dimensional muscle-neuronal co-culture system

  • Regular Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

The purpose of our study was to create functional muscle tissue in vitro and to investigate the influence of organotypic neuronal slice cultures from rat spinal cord on the differentiation and function of primary rat myoblasts in a novel three-dimensional culture system. Three-dimensional muscle-neuronal cultures were established by co-cultivating primary rat skeletal muscle cells of newborn rats with organotypic slice cultures of the spinal cord prepared from isogenic rats in a fibrin matrix. These constructs were cultured for up to 4 weeks. Differentiation and fusion of the myoblasts to myofibers was evaluated by analyzing the expression pattern and localization of muscle- and neuron-specific markers. The fibrin matrix provided a suitable environment for three-dimensional myoblast culture. Co-culturing of organotypic spinal cord slices with myoblasts induced the formation of spontaneously contracting multinuclear and parallel-aligned myofibers. Pharmacological tests suggested the formation of neuromuscular junctions. The analysis of neural agrin expression and myogenic desmin, myogenin, MyoD, Trisk 51, and nicotinic-acetycholine receptor (nACh-receptor) ε-subunit expression revealed the differentiation of the myoblasts to myofibers. The presented novel three-dimensional co-culture system allows the in vitro investigation of myoblast differentiation and neuron-myoblast interaction. Our results suggest the existence of an alternative pathway for the maturation of the nAChR γ-subunit to the ε-subunit without neural agrin activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4A, B.
Fig. 5A, B.

Similar content being viewed by others

References

  • Acarturk TO, Peel MM, Petrosko P, LaFramboise W, Johnson PC, DiMilla PA (1999) Control of attachment, morphology, and proliferation of skeletal myoblasts on silanized glass. J Biomed Mater Res 44:355–370

    Article  PubMed  Google Scholar 

  • Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117:1183–1198

    CAS  PubMed  Google Scholar 

  • Adams JC, Clelland JD, Collett GD, Matsumura F, Yamashiro S, Zhang L (1999) Cell-matrix adhesions differentially regulate fascin phosphorylation. Mol Biol Cell 10:4177–4190

    PubMed  Google Scholar 

  • Albelda SM, Buck CA (1990) Integrins and other cell adhesion molecules. FASEB J 4:2868–2880

    PubMed  Google Scholar 

  • Apel ED, Glass DJ, Moscoso LM, Yancopoulos GD, Sanes JR (1997) Rapsyn is required for MuSK signaling and recruits synaptic components to a MuSK-containing scaffold. Neuron 18:623–635

    CAS  PubMed  Google Scholar 

  • Askanas V, Kwan H, Alvarez RB, Engel WK, Kobayashi T, Martinuzzi A, Hawkins EF (1987) De novo neuromuscular junction formation on human muscle fibres cultured in monolayer and innervated by foetal rat spinal cord: ultrastructural and ultrastructural-cytochemical studies. J Neurocytol 16:523–537

    PubMed  Google Scholar 

  • Bach AD, Bannasch H, Galla TJ, Bittner KM, Stark GB (2001) Fibrin glue as matrix for cultured autologous urothelial cells in urethral reconstruction. Tissue Eng 7:45–53

    Article  PubMed  Google Scholar 

  • Blanco-Bose WE, Yao CC, Kramer RH, Blau HM (2001) Purification of mouse primary myoblasts based on alpha 7 integrin expression. Exp Cell Res 265:212–220

    Article  CAS  PubMed  Google Scholar 

  • Blau HM, Dhawan J, Pavlath GK (1993) Myoblasts in pattern formation and gene therapy. Trends Genet 9:269–274

    Article  CAS  PubMed  Google Scholar 

  • Brand T, Butler-Browne G, Fuchtbauer EM, Renkawitz-Pohl R, Brand-Saberi B (2000) EMBO Workshop Report: molecular genetics of muscle development and neuromuscular diseases. EMBO J 19:1935–1941

    Article  CAS  PubMed  Google Scholar 

  • Braun S, Croizat B, Lagrange MC, Poindron P, Warter JM (1997) Degeneration of cocultures of spinal muscular atrophy muscle cells and rat spinal cord explants is not due to secreted factors and cannot be prevented by neurotrophins. Muscle Nerve 20:953–960

    Article  CAS  PubMed  Google Scholar 

  • Brenner HR, Witzemann V, Sakmann B (1990) Imprinting of acetylcholine receptor messenger RNA accumulation in mammalian neuromuscular synapses. Nature 344:544–547

    Article  CAS  PubMed  Google Scholar 

  • Brenner HR, Herczeg A, Slater CR (1992) Synapse-specific expression of acetylcholine receptor genes and their products at original synaptic sites in rat soleus muscle fibres regenerating in the absence of innervation. Development 116:41–53

    CAS  PubMed  Google Scholar 

  • Brenner HR, Rotzler S, Kues WA, Witzemann V, Sakmann B (1994) Nerve-dependent induction of AChR epsilon-subunit gene expression in muscle is independent of state of differentiation. Dev Biol 165:527–536

    Google Scholar 

  • Campanelli JT, Roberds SL, Campbell KP, Scheller RH (1994) A role for dystrophin-associated glycoproteins and utrophin in agrin-induced AChR clustering. Cell 77:663–674

    CAS  PubMed  Google Scholar 

  • Campion DR (1984) The muscle satellite cell: a review. Int Rev Cytol 87:225–251

    CAS  PubMed  Google Scholar 

  • Caswell AH, Motoike HK, Fan H, Brandt NR (1999) Location of ryanodine receptor binding site on skeletal muscle triadin. Biochemistry 38:90–97

    Article  CAS  PubMed  Google Scholar 

  • Catterall WA, Scheuer T, Thomsen W, Rossie S (1991) Structure and modulation of voltage-gated ion channels. Ann N Y Acad Sci 625:174–180

    CAS  PubMed  Google Scholar 

  • Clark RA, Lanigan JM, DellaPelle P, Manseau E, Dvorak HF, Colvin RB (1982) Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol 79:264–269

    CAS  PubMed  Google Scholar 

  • Cohen I, Rimer M, Lomo T, McMahan UJ (1997) Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo. Mol Cell Neurosci 9:237–253

    Article  CAS  PubMed  Google Scholar 

  • Cossu G, Borello U (1999) Wnt signaling and the activation of myogenesis in mammals. EMBO J 18:6867–6872

    Article  CAS  PubMed  Google Scholar 

  • DeChiara TM, Bowen DC, Valenzuela DM, Simmons MV, Poueymirou WT, Thomas S, Kinetz E, Compton DL, Rojas E, Park JS, Smith C, DiStefano PS, Glass DJ, Burden SJ, Yancopoulos GD (1996) The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo. Cell 85:501–512

    CAS  PubMed  Google Scholar 

  • Delfini M, Hirsinger E, Pourquie O, Duprez D (2000) Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development 127:5213–5224

    CAS  PubMed  Google Scholar 

  • Dennis RG, Kosnik PE (2000) Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 36:327–335

    CAS  PubMed  Google Scholar 

  • Denzer AJ, Hauser DM, Gesemann M, Ruegg MA (1997) Synaptic differentiation: the role of agrin in the formation and maintenance of the neuromuscular junction. Cell Tissue Res 290:357–365

    Article  CAS  PubMed  Google Scholar 

  • DiEdwardo CA, Petrosko P, Acarturk TO, DiMilla PA, LaFramboise WA, Johnson PC (1999) Muscle tissue engineering. Clin Plast Surg 26:647–649

    CAS  PubMed  Google Scholar 

  • Fambrough DM (1979) Control of acetylcholine receptors in skeletal muscle. Physiol Rev 59:165–227

    CAS  PubMed  Google Scholar 

  • Fassati A, Bresolin N (2000) Retroviral vectors for gene therapy of Duchenne muscular dystrophy. Neurol Sci 21:S925-S927

    Article  CAS  PubMed  Google Scholar 

  • Ferns M, Deiner M, Hall Z (1996) Agrin-induced acetylcholine receptor clustering in mammalian muscle requires tyrosine phosphorylation. J Cell Biol 132:937–944

    CAS  PubMed  Google Scholar 

  • Freed LE, Vunjak-Novakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, Langer R (1994) Biodegradable polymer scaffolds for tissue engineering. Biotechnology 12:689–693

    CAS  PubMed  Google Scholar 

  • Fuhrer C, Gautam M, Sugiyama JE, Hall ZW (1999) Roles of rapsyn and agrin in interaction of postsynaptic proteins with acetylcholine receptors. J Neurosci 19:6405–6416

    CAS  PubMed  Google Scholar 

  • Garcia AJ, Vega MD, Boettiger D (1999) Modulation of cell proliferation and differentiation through substrate-dependent changes in fibronectin conformation. Mol Biol Cell 10:785–798

    CAS  PubMed  Google Scholar 

  • Gautam M, Noakes PG, Moscoso L, Rupp F, Scheller RH, Merlie JP, Sanes JR (1996) Defective neuromuscular synaptogenesis in agrin-deficient mutant mice. Cell 85:525–535

    CAS  PubMed  Google Scholar 

  • Gillis JM (2000) An attempt of gene therapy in Duchenne muscular dystrophy: overexpression of utrophin in transgenic mdx mice. Acta Neurol Belg 100:146–150

    CAS  PubMed  Google Scholar 

  • Glass DJ, Bowen DC, Stitt TN, Radziejewski C, Bruno J, Ryan TE, Gies DR, Shah S, Mattsson K, Burden SJ, DiStefano PS, Valenzuela DM, DeChiara TM, Yancopoulos GD (1996) Agrin acts via a MuSK receptor complex. Cell 85:513–523

    CAS  PubMed  Google Scholar 

  • Glover L, Culligan K, Cala S, Mulvey C, Ohlendieck K (2001) Calsequestrin binds to monomeric and complexed forms of key calcium-handling proteins in native sarcoplasmic reticulum membranes from rabbit skeletal muscle. Biochim Biophys Acta 1515:120–132

    CAS  PubMed  Google Scholar 

  • Godfrey EW, Nitkin RM, Wallace BG, Rubin LL, McMahan UJ (1984) Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells. J Cell Biol 99:615–627

    CAS  PubMed  Google Scholar 

  • Goldman D, Staple J (1989) Spatial and temporal expression of acetylcholine receptor RNAs in innervated and denervated rat soleus muscle. Neuron 3:219–228

    CAS  PubMed  Google Scholar 

  • Goldman D, Carlson BM, Staple J (1991) Induction of adult-type nicotinic acetylcholine receptor gene expression in noninnervated regenerating muscle. Neuron 7:649–658

    CAS  PubMed  Google Scholar 

  • Grande DA, Halberstadt C, Naughton G, Schwartz R, Manji R (1997) Evaluation of matrix scaffolds for tissue engineering of articular cartilage grafts. J Biomed Mater Res 34:211–220

    Article  CAS  PubMed  Google Scholar 

  • Gu Y, Hall ZW (1988) Immunological evidence for a change in subunits of the acetylcholine receptor in developing and denervated rat muscle. Neuron 1:117–125

    CAS  PubMed  Google Scholar 

  • Guettier-Sigrist S, Coupin G, Braun S, Warter JM, Poindron P (1998) Muscle could be the therapeutic target in SMA treatment. J Neurosci Res 53:663–669

    Article  CAS  PubMed  Google Scholar 

  • Gullberg D, Sjoberg G, Velling T, Sejersen T (1995) Analysis of fibronectin and vitronectin receptors on human fetal skeletal muscle cells upon differentiation. Exp Cell Res 220:112–123

    Article  CAS  PubMed  Google Scholar 

  • Gussoni E, Pavlath GK, Lanctot AM, Sharma KR, Miller RG, Steinman L, Blau HM (1992) Normal dystrophin transcripts detected in Duchenne muscular dystrophy patients after myoblast transplantation. Nature 356:435–438

    CAS  PubMed  Google Scholar 

  • Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS Jr (2000) NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science 289:2363–2366

    Article  CAS  PubMed  Google Scholar 

  • Hawke TJ, Garry DJ (2001) Myogenic satellite cells: physiology to molecular biology. J Appl Physiol 91:534–551

    Google Scholar 

  • Herbst R, Burden SJ (2000) The juxtamembrane region of MuSK has a critical role in agrin-mediated signaling. EMBO J 19:67–77

    Article  CAS  PubMed  Google Scholar 

  • Imagawa T, Smith JS, Coronado R, Campbell KP (1987) Purified ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J Biol Chem 262:16636–16643

    CAS  PubMed  Google Scholar 

  • Jaramillo F, Vicini S, Schuetze SM (1988) Embryonic acetylcholine receptors guarantee spontaneous contractions in rat developing muscle. Nature 335:66–68

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Meier T, Lichtsteiner M, Witzemann V, Sakmann B, Brenner HR (1997) Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle. Proc Natl Acad Sci USA 94:2654–2659

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Moore C, Hashemolhosseini S, Brenner HR (1999) Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers. J Neurosci 19:3376–3383

    CAS  PubMed  Google Scholar 

  • Juhasz I, Murphy GF, Yan HC, Herlyn M, Albelda SM (1993) Regulation of extracellular matrix proteins and integrin cell substratum adhesion receptors on epithelium during cutaneous human wound healing in vivo. Am J Pathol 143:1458–1469

    Google Scholar 

  • Kobayashi YM, Alseikhan BA, Jones LR (2000) Localization and characterization of the calsequestrin-binding domain of triadin 1. Evidence for a charged beta-strand in mediating the protein-protein interaction. J Biol Chem 275:17639–17646

    Article  CAS  PubMed  Google Scholar 

  • Kosnik PE, Faulkner JA, Dennis RG (2001) Functional development of engineered skeletal muscle from adult and neonatal rats. Tissue Eng 7:573–584

    Article  CAS  PubMed  Google Scholar 

  • Kues WA, Brenner HR, Sakmann B, Witzemann V (1995) Local neurotrophic repression of gene transcripts encoding fetal AChRs at rat neuromuscular synapses. J Cell Biol 130:949–957

    CAS  PubMed  Google Scholar 

  • Law PK, Goodwin TG, Fang Q, Deering MB, Duggirala V, Larkin C, Florendo JA, Kirby DS, Li HJ, Chen M (1993) Cell transplantation as an experimental treatment for Duchenne muscular dystrophy. Cell Transplant 2:485–505

    CAS  PubMed  Google Scholar 

  • Lee LK, Kunkel DD, Stollberg J (2002) Mechanistic distinctions between agrin and laminin-1 induced aggregation of acetylcholine receptors. BMC Neurosci 3:10

    Article  PubMed  Google Scholar 

  • Martinou JC, Merlie JP (1991) Nerve-dependent modulation of acetylcholine receptor epsilon-subunit gene expression. J Neurosci 11:1291–1299

    CAS  PubMed  Google Scholar 

  • Marty I, Thevenon D, Scotto C, Groh S, Sainnier S, Robert M, Grunwald D, Villaz M (2000) Cloning and characterization of a new isoform of skeletal muscle triadin. J Biol Chem 275:8206–8212

    Article  CAS  PubMed  Google Scholar 

  • McMahan UJ (1990) The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55:407–418

    CAS  PubMed  Google Scholar 

  • Meier T, Wallace BG (1998) Formation of the neuromuscular junction: molecules and mechanisms. Bioessays 20:819–829

    Article  CAS  PubMed  Google Scholar 

  • Meier T, Ruegg MA, Wallace BG (1998) Muscle-specific agrin isoforms reduce phosphorylation of AChR gamma and delta subunits in cultured muscle cells. Mol Cell Neurosci 11:206–216

    Article  CAS  PubMed  Google Scholar 

  • Mikos AG, Sarakinos G, Leite SM, Vacanti JP, Langer R (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323–330

    Article  CAS  PubMed  Google Scholar 

  • Miller JB, Everitt EA, Smith TH, Block NE, Dominov JA (1993) Cellular and molecular diversity in skeletal muscle development: news from in vitro and in vivo. Bioessays 15:191–196

    CAS  PubMed  Google Scholar 

  • Mishina M, Takai T, Imoto K, Noda M, Takahashi T, Numa S, Methfessel C, Sakmann B (1986) Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321:406–411

    Google Scholar 

  • Missias AC, Chu GC, Klocke BJ, Sanes JR, Merlie JP (1996) Maturation of the acetylcholine receptor in skeletal muscle: regulation of the AChR gamma-to-epsilon switch. Dev Biol 179:223–238

    Article  CAS  PubMed  Google Scholar 

  • Molkentin JD, Olson EN (1996) Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci USA 93:9366–9373

    Article  CAS  PubMed  Google Scholar 

  • Mooney DJ, Mikos AG (1999) Growing new organs. Sci Am 280:60–65

    CAS  PubMed  Google Scholar 

  • Nitkin RM, Smith MA, Magill C, Fallon JR, Yao YM, Wallace BG, McMahan UJ (1987) Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J Cell Biol 105:2471–2478

    CAS  PubMed  Google Scholar 

  • O'Keefe EJ, Payne RE Jr, Russell N, Woodley DT (1985) Spreading and enhanced motility of human keratinocytes on fibronectin. J Invest Dermatol 85:125–130

    CAS  PubMed  Google Scholar 

  • Okano T, Matsuda T (1998a) Muscular tissue engineering: capillary-incorporated hybrid muscular tissues in vivo tissue culture. Cell Transplant 7:435–442

    Article  CAS  PubMed  Google Scholar 

  • Okano T, Matsuda T (1998b) Tissue engineered skeletal muscle: preparation of highly dense, highly oriented hybrid muscular tissues. Cell Transplant 7:71–82

    Article  CAS  PubMed  Google Scholar 

  • Rando TA, Pavlath GK, Blau HM (1995) The fate of myoblasts following transplantation into mature muscle. Exp Cell Res 220:383–389

    Article  CAS  PubMed  Google Scholar 

  • Rebel JM, Boer WI de, Thijssen CD, Vermey M, Zwarthoff EC, Van der Kwast TH (1994) An in vitro model of urothelial regeneration: effects of growth factors and extracellular matrix proteins. J Pathol 173:283–291

    CAS  PubMed  Google Scholar 

  • Rimer M, Mathiesen I, Lomo T, McMahan UJ (1997) Gamma-AChR/epsilon-AChR switch at agrin-induced postsynaptic-like apparatus in skeletal muscle. Mol Cell Neurosci 9:254–263

    Article  CAS  PubMed  Google Scholar 

  • Rimer M, Cohen I, Lomo T, Burden SJ, McMahan UJ (1998) Neuregulins and erbB receptors at neuromuscular junctions and at agrin-induced postsynaptic-like apparatus in skeletal muscle. Mol Cell Neurosci 12:1–15

    Article  CAS  PubMed  Google Scholar 

  • Schultz E (1989) Satellite cell behavior during skeletal muscle growth and regeneration. Med Sci Sports Exerc 21:S181-S186

    CAS  PubMed  Google Scholar 

  • Schwarz H, Giese G, Muller H, Koenen M, Witzemann V (2000) Different functions of fetal and adult AChR subtypes for the formation and maintenance of neuromuscular synapses revealed in epsilon-subunit-deficient mice. Eur J Neurosci 12:3107–3116

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama JE, Glass DJ, Yancopoulos GD, Hall ZW (1997) Laminin-induced acetylcholine receptor clustering: an alternative pathway. J Cell Biol 139:181–191

    Article  CAS  PubMed  Google Scholar 

  • Tanaka H, Furuya T, Kameda N, Kobayashi T, Mizusawa H (2000) Triad proteins and intracellular Ca2+ transients during development of human skeletal muscle cells in aneural and innervated cultures. J Muscle Res Cell Motil 21:507–526

    CAS  PubMed  Google Scholar 

  • Valdez MR, Richardson JA, Klein WH, Olson EN (2000) Failure of Myf5 to support myogenic differentiation without myogenin, MyoD, and MRF4. Dev Biol 219:287–298

    Google Scholar 

  • Wachem PB van, Luyn MJ van, Costa ML da (1996) Myoblast seeding in a collagen matrix evaluated in vitro. J Biomed Mater Res 30:353–360

    Article  PubMed  Google Scholar 

  • Wallace BG (1989) Agrin-induced specializations contain cytoplasmic, membrane, and extracellular matrix-associated components of the postsynaptic apparatus. J Neurosci 9:1294–1302

    CAS  PubMed  Google Scholar 

  • Watt DJ, Lambert K, Morgan JE, Partridge TA, Sloper JC (1982) Incorporation of donor muscle precursor cells into an area of muscle regeneration in the host mouse. J Neurol Sci 57:319–331

    Article  CAS  PubMed  Google Scholar 

  • Weintraub H (1993) The MyoD family and myogenesis: redundancy, networks, and thresholds. Cell 75:1241–1244

    CAS  PubMed  Google Scholar 

  • Weintraub H, Davis R, Tapscott S, Thayer M, Krause M, Benezra R, Blackwell TK, Turner D, Rupp R, Hollenberg S (1991) The myoD gene family: nodal point during specification of the muscle cell lineage. Science 251:761–766

    Google Scholar 

  • Willmann R, Fuhrer C (2002) Neuromuscular synaptogenesis: clustering of acetylcholine receptors revisited. Cell Mol Life Sci 59:1296–1316

    Article  Google Scholar 

  • Witzemann V, Barg B, Nishikawa Y, Sakmann B, Numa S (1987) Differential regulation of muscle acetylcholine receptor g. FEBS Lett 223:104–112

    Article  CAS  PubMed  Google Scholar 

  • Witzemann V, Brenner HR, Sakmann B (1991) Neural factors regulate AChR subunit mRNAs at rat neuromuscular synapses. J Cell Biol 114:125–141

    CAS  PubMed  Google Scholar 

  • Witzemann V, Schwarz H, Koenen M, Berberich C, Villarroel A, Wernig A, Brenner HR, Sakmann B (1996) Acetylcholine receptor epsilon-subunit deletion causes muscle weakness and atrophy in juvenile and adult mice. Proc Natl Acad Sci USA 93:13286–13291

    Article  CAS  PubMed  Google Scholar 

  • Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA, Turina M (2000a) Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 17:587–591

    Google Scholar 

  • Ye Q, Zund G, Jockenhoevel S, Hoerstrup SP, Schoeberlein A, Grunenfelder J, Turina M (2000b) Tissue engineering in cardiovascular surgery: new approach to develop completely human autologous tissue. Eur J Cardiothorac Surg 17:449–454

    Google Scholar 

  • Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR (1997) Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272:23389–23397

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate T. Nolting's excellent technical advice and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Bach.

Additional information

A.D.B. and J.P.B. contributed equally to this study

This work was supported by a major grant from the State of Baden-Württemberg within the scope of the Valley TEC (Valley Tissue Engineering Center)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bach, A.D., Beier, J.P. & Stark, G.B. Expression of Trisk 51, agrin and nicotinic-acetycholine receptor ε-subunit during muscle development in a novel three-dimensional muscle-neuronal co-culture system. Cell Tissue Res 314, 263–274 (2003). https://doi.org/10.1007/s00441-003-0757-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-003-0757-6

Keywords

Navigation