Skip to main content
Log in

Concentration of the empirical level sets of Tukey’s halfspace depth

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

Tukey’s halfspace depth has attracted much interest in data analysis, because it is a natural way of measuring the notion of depth relative to a cloud of points or, more generally, to a probability measure. Given an i.i.d. sample, we investigate the concentration of upper level sets of the Tukey depth relative to that sample around their population version. We show that under some mild assumptions on the underlying probability measure, concentration occurs at a parametric rate and we deduce moment inequalities at that same rate. In a computational prospective, we study the concentration of a discretized version of the empirical upper level sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arcones, M.A., Chen, Z., Giné, E.: Estimators related to \(U\)-processes with applications to multivariate medians: asymptotic normality. Ann. Stat. 22(3), 1460–1477 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bárány, I., Larman, D.G.: Convex bodies, economic cap coverings, random polytopes. Mathematika 35(2), 274–291 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baraud, Y.: Bounding the expectation of the supremum of an empirical process over a (weak) VC-major class. Electron. J. Stat. 10(2), 1709–1728 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brunel, V.-E.: Uniform behaviors of random polytopes under the hausdorff metric. Bernoulli (2018) (to appear)

  5. Brunel, V.-E.: Adaptive estimation of convex polytopes and convex sets from noisy data. Electron. J. Stat. 7, 1301–1327 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brunel, V.-E..: A universal deviation inequality for random polytopes (2014). arXiv:1311.2902

  7. Chaudhuri, P.: On a geometric notion of quantiles for multivariate data. J. Am. Stat. Assoc. 91(434), 862–872 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom. 10, 377–409 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cole, R., Sharir, M., Yap, C.-K.: On \(k\)-hulls and related problems. SIAM J. Comput. 16(1), 61–77 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cuesta-Albertos, J.A., Nieto-Reyes, A.: The random Tukey depth. Comput. Stat. Data Anal. 52(11), 4979–4988 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuevas, A., González-Manteiga, W., Rodríguez-Casal, A.: Plug-in estimation of general level sets. Aust. N. Z. J. Stat. 48(1), 7–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho, D.L., Gasko, M.: Breakdown properties of location estimates based on halfspace depth and projected outlyingness. Ann. Stat. 20(4), 1803–1827 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dutta, S., Ghosh, A.K., Chaudhuri, P.: Some intriguing properties of Tukey’s half-space depth. Bernoulli 17(4), 1420–1434 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dyckerhoff, R., Mozharovskyi, P.: Exact computation of the halfspace depth. Comput. Stat. Data Anal. 98, 19–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fresen, D.: A multivariate Gnedenko law of large numbers. Ann. Probab. 41(5), 3051–3080 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ghosh, A.K., Chaudhuri, P.: On data depth and distribution-free discriminant analysis using separating surfaces. Bernoulli 11(1), 1–27 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghosh, A.K., Chaudhuri, P.: On maximum depth and related classifiers. Scand. J. Stat. 32(2), 327–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Guntuboyina, A.: Optimal rates of convergence for convex set estimation from support functions. Ann. Stat. 40(1), 385–411 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hallin, M., Paindaveine, D., Šiman, M.: Multivariate quantiles and multiple-output regression quantiles: from \(L_1\) optimization to halfspace depth. Ann. Stat. 38(2), 635–669 (2010)

    Article  MATH  Google Scholar 

  20. He, X., Wang, G.: Convergence of depth contours for multivariate datasets. Ann. Stat. 25(2), 495–504 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. He, Y.: Multivariate extreme value statistics for risk assessment. Ph.D. thesis (2016)

  22. Hubert, M., Rousseeuw, P., Segaert, P.: Multivariate and functional classification using depth and distance. Adv. Data Anal. Classif. 11(3), 445–466 (2017)

    Article  MathSciNet  Google Scholar 

  23. Johnson, D.S., Preparata, F.P.: The densest hemisphere problem. Theor. Comput. Sci. 6(1), 93–107 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim, J.: Rate of convergence of depth contours: with application to a multivariate metrically trimmed mean. Stat. Probab. Lett. 49(4), 393–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Koltchinskii, V.: Oracle inequalities in empirical risk minimization and sparse recovery problems, volume 2033 of Lecture Notes in Mathematics. Lectures from the 38th Probability Summer School held in Saint-Flour, 2008, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School] Springer, Heidelberg (2011)

  26. Kong, L., Mizera, I.: Quantile tomography: using quantiles with multivariate data. Stat. Sin. 22(4), 1589–1610 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Li, S.: Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat. 4(1), 66–70 (2011)

    Article  MathSciNet  Google Scholar 

  28. Liu, R.Y., Parelius, J.M., Singh, K.: Multivariate analysis by data depth: descriptive statistics, graphics and inference. With discussion and a rejoinder by Liu and Singh. Ann. Stat. 27(3), 783–858 (1999)

    Article  MATH  Google Scholar 

  29. Liu, R.Y., Singh, K.: A quality index based on data depth and multivariate rank tests. J. Am. Stat. Assoc. 88(421), 252–260 (1993)

    MathSciNet  MATH  Google Scholar 

  30. Lòpez, R., Still, G.: Semi-infinite programming. Eur. J. Oper. Res. 180(2), 491–518 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lovász, L., Vempala, S.: The geometry of logconcave functions and sampling algorithms. Random Struct. Algorithms 30(3), 307–358 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mani-Levitska, P.: Characterization of convex sets. In: Gruber, P.M. and Wills, J.M. (eds.) Handbook of Convex Geometry, North-Holland, pp. 19–41 (1993)

  33. Massé, J.-C., Theodorescu, R.: Halfplane trimming for bivariate distributions. J. Multivar. Anal. 48(2), 188–202 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  34. Massé, J.-C.: Asymptotics for the Tukey depth process, with an application to a multivariate trimmed mean. Bernoulli 10(3), 397–419 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Miller, K., Ramaswami, S., Rousseeuw, P., Sellarès, J.A., Souvaine, D., Streinu, I., Struyf, A.: Efficient computation of location depth contours by methods of computational geometry. Stat. Comput. 13(2), 153–162 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Molchanov, I.S.: A limit theorem for solutions of inequalities. Scand. J. Stat. 25(1), 235–242 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pateiro-Lopez, B.: Set estimation under convexity type restrictions. PhD thesis (2008)

  38. Polonik, W.: Measuring mass concentrations and estimating density contour clusters—an excess mass approach. Ann. Stat. 23, 855–881 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rigollet, P., Vert, R.: Optimal rates for plug-in estimators of density level sets. Bernoulli 15(4), 1154–1178 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rousseeuw, P.J., Ruts, I.: Computing depth contours of bivariate point clouds. Comput. Stat. Data Anal. 23, 153–168 (1996)

    Article  MATH  Google Scholar 

  41. Rousseeuw, P.J., Struyf, A.: Computing location depth and regression depth in higher dimensions. Stat. Comput. 8, 193–203 (1998)

    Article  Google Scholar 

  42. Rousseeuw, P.J., Ruts, I.: The depth function of a population distribution. Metrika 49(3), 213–244 (1999)

    MathSciNet  MATH  Google Scholar 

  43. Schneider, R.: Convex Bodies: The Brunn–Minkowski theory, volume 151 of Encyclopedia of Mathematics and Its Applications, expanded edn. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  44. Schtt, C., Werner, E.: The convex floating body. Math. Scand. 66, 275–290 (1990)

    Article  MathSciNet  Google Scholar 

  45. Tsybakov, A.: On nonparametric estimation of density level sets. Ann. Stat. 25, 948–969 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tukey, J.W.: Mathematics and the picturing of data. In: Proceedings of the International Congress of Mathematicians, pp. 523–531 (1975)

  47. Yeh, A.B., Singh, K.: Balanced confidence regions based on Tukey’s depth and the bootstrap. J. R. Stat. Soc. Ser. B 59(3), 639–652 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zuo, Y., Serfling, R.: General notions of statistical depth function. Ann. Stat. 28(2), 461–482 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zuo, Y., Serfling, R.: Structural properties and convergence results for contours of sample statistical depth functions. Ann. Stat. 28(2), 483–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor-Emmanuel Brunel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brunel, VE. Concentration of the empirical level sets of Tukey’s halfspace depth. Probab. Theory Relat. Fields 173, 1165–1196 (2019). https://doi.org/10.1007/s00440-018-0850-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0850-0

Keywords

Mathematics Subject Classification

Navigation