Advertisement

Strong law of large numbers for the capacity of the Wiener sausage in dimension four

  • Amine Asselah
  • Bruno Schapira
  • Perla Sousi
Article

Abstract

We prove a strong law of large numbers for the Newtonian capacity of a Wiener sausage in the critical dimension four, where a logarithmic correction appears in the scaling. The main step of the proof is to obtain precise asymptotics for the expected value of the capacity. This requires a delicate analysis of intersection probabilities between two independent Wiener sausages.

Keywords

Capacity Wiener sausage Law of large numbers 

Mathematics Subject Classification

Primary 60F05 60G50 

Notes

Acknowledgements

We warmly thank the referee for his/her very careful reading and insightful comments, which greatly helped improve, clarify and correct the paper.

References

  1. 1.
    Aizenman, M.: The intersection of Brownian paths as a case study of a renormalization group method for quantum field theory. Commun. Math. Phys. 97(1–2), 91–110 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Albeverio, S., Zhou, X.Y.: Intersections of random walks and Wiener sausages in four dimensions. Acta Appl. Math. 45(2), 195–237 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Asselah, A., Schapira, B., Sousi, P.: Capacity of the range of random walk on \({\mathbb{Z}}^d\). (2016). arXiv:1602.03499v1
  4. 4.
    Asselah, A., Schapira, B., Sousi, P.: Capacity of the range of random walk on \({\mathbb{Z}}^4\). (2016). arXiv:1611.04567
  5. 5.
    Chung, F., Lu, L.: Concentration inequalities and martingale inequalities: a survey. Internet Math. 3(1), 79–127 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dvoretzky, A., Erdös, P., Kakutani, S.: Double points of paths of Brownian motion in \(n\)-space. Acta Sci. Math. Szeged 12(Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars B), 75–81 (1950)Google Scholar
  7. 7.
    Erdös, P., Taylor, S.J.: Some intersection properties of random walk paths. Acta Math. Acad. Sci. Hung. 11, 231–248 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Erhard, D., Poisat, J.: Asymptotics of the critical time in Wiener sausage percolation with a small radius. ALEA Lat. Am. J Probab. Math. Stat. 13(1), 417–445 (2016)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Getoor, R.K.: Some asymptotic formulas involving capacity. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4(248–252), 1965 (1965)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Khoshnevisan, D.: Intersections of Brownian motions. Expos. Math. 21(2), 97–114 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lawler, G.F.: The probability of intersection of independent random walks in four dimensions. Commun. Math. Phys. 86(4), 539–554 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Lawler, G.F.: Intersections of Random Walks. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA (1991)CrossRefzbMATHGoogle Scholar
  13. 13.
    Le Gall, J.-F.: Propriétés d’intersection des marches aléatoires. I. Convergence vers le temps local d’intersection. Commun. Math. Phys. 104(3), 471–507 (1986)CrossRefzbMATHGoogle Scholar
  14. 14.
    Le Gall, J.-F.: Sur la saucisse de Wiener et les points multiples du mouvement brownien. Ann. Probab. 14(4), 1219–1244 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Le Gall, J.-F.: Fluctuation results for the Wiener sausage. Ann. Probab. 16(3), 991–1018 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Le Gall, J.-F.: Some properties of planar Brownian motion. In: École d’Été de Probabilités de Saint-Flour XX—1990, volume 1527 of Lecture Notes in Mathematics, pp. 111–235. Springer, Berlin (1992)Google Scholar
  17. 17.
    Lieb, E.H., Loss, M.: Analysis, volume 14 of Graduate Studies in Mathematics, 2nd edn. American Mathematical Society, Providence (2001)Google Scholar
  18. 18.
    Mörters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  19. 19.
    Pemantle, R., Peres, Y., Shapiro, J.W.: The trace of spatial Brownian motion is capacity-equivalent to the unit square. Probab. Theory Relat. Fields 106(3), 379–399 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Peres, Y.: Intersection-equivalence of Brownian paths and certain branching processes. Commun. Math. Phys. 177(2), 417–434 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, Volume 293 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 3rd edn. Springer, Berlin (1999)Google Scholar
  22. 22.
    van den Berg, M., Bolthausen, E., den Hollander, F.: Torsional rigidity for regions with a Brownian boundary. (2016). arXiv:1604.07007

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Université Paris-Est CréteilCréteilFrance
  2. 2.CNRS, Centrale Marseille, I2M, UMR 7373Aix-Marseille UniversitéMarseilleFrance
  3. 3.University of CambridgeCambridgeUK

Personalised recommendations