Skip to main content
Log in

A PDE approach to a 2-dimensional matching problem

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

We prove asymptotic results for 2-dimensional random matching problems. In particular, we obtain the leading term in the asymptotic expansion of the expected quadratic transportation cost for empirical measures of two samples of independent uniform random variables in the square. Our technique is based on a rigorous formulation of the challenging PDE ansatz by Caracciolo et al. (Phys Rev E 90:012118, 2014) that linearizes the Monge–Ampère equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86, 125–145 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ajtai, M., Komlos, J., Tusnády, G.: On optimal matchings. Combinatorica 4, 259–264 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics, ETH Zürich, Birkhäuser (2008)

    MATH  Google Scholar 

  4. Ambrosio, L., Gigli, N., Savaré, G.: Bakry–Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Ann. Probab. 43, 339–404 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ambrosio, L., Mondino, A., Savaré, G.: Nonlinear diffusion equations and curvature conditions in metric measure spaces. ArXiv Preprint arXiv:1509.07273

  6. Bakry, D.: Étude des transformations de Riesz dans les variés riemanniennes à courbure de Ricci minorée. Séminaire de Probabilités, vol. XXI, pp. 137–172. Springer, (1987)

  7. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften, vol. 348. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  8. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Systems & Control: Foundations and Applications. Birkhäuser, Basel (1997)

    Book  MATH  Google Scholar 

  9. Barthe, F., Bordenave, C.: Combinatorial optimization over two random point sets. In: Séminaire de Probabilités, Lecture Notes in Math, 2078, vol. XLV, pp. 483–535. Springer, Cham (2013)

  10. Berg, C., Forst, G.: Potential Theory on Locally Compact Abelian Groups. Ergebn. der Math., vol. 87. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  11. Boutet de Monvel, J., Martin, O.: Almost sure convergence of the minimum bipartite matching functional in Euclidean space. Combinatorica 22, 523–530 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the Monge–Kantorovich mass transfer problem. Numer. Math. 84, 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bobkov, S., Ledoux, M.: One-dimensional empirical measures, order statistics, and Kantorovich transport distances. Preprint (2016)

  14. Brown, R.M.: The trace of the heat kernel in Lipschitz domains. Trans. AMS 339, 889–900 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Capuzzo Dolcetta, I.: Representations of solutions of Hamilton-Jacobi equations. In: Nonlinear Equations: Methods, Models and Applications (Bergamo 2001), Program Nonlinear Differential Equations Appl., vol. 54, pp. 79–90. Birkhäuser (2003)

  16. Caracciolo, S., Sicuro, G.: One-dimensional Euclidean matching problem: exact solutions, correlation functions, and universality. Phys. Rev. E 90, 042112 (2014)

    Article  Google Scholar 

  17. Caracciolo, S., Sicuro, G.: Quadratic stochastic euclidean bipartite matching problem. Phys. Rev. Lett. 115, 230601 (2015)

    Article  MathSciNet  Google Scholar 

  18. Caracciolo, S., Lucibello, C., Parisi, G., Sicuro, G.: Scaling hypothesis for the Euclidean bipartite matching problem. Phys. Rev. E 90, 012118 (2014)

    Article  Google Scholar 

  19. Cohort, P.: Limit theorems for random normalized distortion. Ann. Appl. Probab. 14, 118–143 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Crandall, M. G., Evans, L. C., Lions, P.-L.: Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282, 487–502

  21. Dobrić, V., Yukich, J.E.: Asymptotics for transportation cost in high dimensions. J. Theor. Probab. 8, 97–118 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Erbar, M., Kuwada, K., Sturm, K.-T.: On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Invent. Math. 201, 993–1071 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Evans, L.C., Gangbo, W.: Differential equations methods for the Monge–Kantorovich mass transfer problem. Memoirs of the American Mathematical Society. American Mathematical Society, Providence (1999)

    MATH  Google Scholar 

  24. Fathi, A.: Weak KAM Theory in Lagrangian Dynamics. Cambridge Studies in Advanced Mathematics, vol. 88 (2008)

  25. Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Relat. Fields 162, 707–738 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gromov, M., Milman, V.: A topological application of the isoperimetric inequality. Am. J. Math. 105, 843–854 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huesmann, M., Sturm, K.T.: Optimal transport from Lebesgue to poisson. Ann. Probab. 41, 2426–2478 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Jiang, J., Li, H., Zhang, H.: Heat kernel bounds on metric measure spaces and some applications. ArXiv preprint arXiv:1407.5289v2

  29. Kuwada, K.: Duality on gradient estimates and Wasserstein controls. J. Funct. Anal. 258, 3758–3774 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ledoux, M.: The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence (2001)

    Google Scholar 

  31. Ledoux, M.: On optimal matching of Gaussian samples. To appear

  32. McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the laplacian. J. Differ. Geom. 1, 43–69 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shor, P.W., Yukich, J.E.: Minimax grid matching and empirical measures. Ann. Probab. 19, 1338–1348 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  34. Stein, E.M.: Topics in Harmonic Analysis Related to the Littlewood-Paley Theory. Annals of Mathematical Studies, vol. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo

  35. Talagrand, M.: Matching random samples in many dimensions. Ann. App. Prob. 2, 846–856 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Talagrand, M.: The transportation cost from the uniform measure to the empirical measure in dimension \(\ge \) 3. Ann. Probab. 22, 919–959 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Talagrand, M.: Upper and Lower Bounds of Stochastic Processes. Modern Surveys in Mathematics, vol. 60. Springer, Berlin (2014)

    Book  Google Scholar 

  38. Tuero, A.: On the stochastic convergence of representations based on Wasserstein metrics. Ann. Prob. 21, 72–85 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Varopoulos, N.T., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups Cambridge Tracts in Math., vol. 100 (2008)

  40. Yukich, J.: Probability Theory of Classical Euclidean Optimization Problems. Lecture Notes in Mathematics, vol. 1675. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  41. Wang, F.-Y.: Equivalent semigroup properties for the curvature-dimension condition. Bull. Sci. Math. 135, 803–815 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, F.-Y.: Analysis for Diffusion Processes on Riemannian Manifolds. World Scientific, Singapore (2014)

    MATH  Google Scholar 

  43. Yosida, K.: Functional Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 123, 6th edn. Springer, Berlin (1980)

    Google Scholar 

Download references

Acknowledgements

The first author warmly thanks S. Caracciolo for pointing out to him the paper [18] and for several conversations on the subject. He also thanks M. Ledoux for precious informations on the 1-dimensional matching problem and on the usefulness, also in this problem, of the phenomenon of concentration of measure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Ambrosio.

Additional information

Partially supported by Project PRA_2016_41. Member of GNAMPA group (INdAM).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambrosio, L., Stra, F. & Trevisan, D. A PDE approach to a 2-dimensional matching problem. Probab. Theory Relat. Fields 173, 433–477 (2019). https://doi.org/10.1007/s00440-018-0837-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-018-0837-x

Keywords

Mathematics Subject Classification

Navigation