Skip to main content
Log in

The Borell–Ehrhard game

  • Published:
Probability Theory and Related Fields Aims and scope Submit manuscript

Abstract

A precise description of the convexity of Gaussian measures is provided by sharp Brunn–Minkowski type inequalities due to Ehrhard and Borell. We show that these are manifestations of a game-theoretic mechanism: a minimax variational principle for Brownian motion. As an application, we obtain a Gaussian improvement of Barthe’s reverse Brascamp–Lieb inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. After this paper was completed, the author learned of recent work [34] where another rather delicate proof of Ehrhard’s inequality is provided using the Ornstein-Uhlenbeck semigroup.

References

  1. Artstein-Avidan, S., Giannopoulos, A., Milman, V.D.: Asymptotic Geometric Analysis. Part I, Mathematical Surveys and Monographs, vol. 202. American Mathematical Society, Providence (2015)

  2. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators, Grundlehren der Mathematischen Wissenschaften, vol. 348. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  3. Barthe, F.: On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134(2), 335–361 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barthe, F.: The Brunn–Minkowski theorem and related geometric and functional inequalities. In: International Congress of Mathematicians, vol. II, pp. 1529–1546. European Mathematical Society, Zürich (2006)

  5. Barthe, F., Huet, N.: On Gaussian Brunn-Minkowski inequalities. Stud. Math. 191(3), 283–304 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennett, J., Carbery, A., Christ, M., Tao, T.: The Brascamp-Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17(5), 1343–1415 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Borell, C.: Diffusion equations and geometric inequalities. Potential Anal. 12(1), 49–71 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borell, C.: The Ehrhard inequality. C. R. Math. Acad. Sci. Paris 337(10), 663–666 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Borell, C.: Minkowski sums and Brownian exit times. Ann. Fac. Sci. Toulouse Math. (6) 16(1), 37–47 (2007)

  10. Borell, C.: Inequalities of the Brunn-Minkowski type for Gaussian measures. Probab. Theory Relat. Fields 140(1–2), 195–205 (2008)

    MathSciNet  MATH  Google Scholar 

  11. Boué, M., Dupuis, P.: A variational representation for certain functionals of Brownian motion. Ann. Probab. 26(4), 1641–1659 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brazitikos, S., Giannopoulos, A., Valettas, P., Vritsiou, B.H.: Geometry of Isotropic Convex Bodies, Mathematical Surveys and Monographs, vol. 196. American Mathematical Society, Providence (2014)

    MATH  Google Scholar 

  13. Cordero-Erausquin, D., Maurey, B.: Some extensions of the Prékopa–Leindler inequality using Borell’s stochastic approach. Stud. Math. (2017) (To appear)

  14. Ehrhard, A.: Symétrisation dans l’espace de Gauss. Math. Scand. 53(2), 281–301 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elliott, R.J., Kalton, N.J.: The Existence of Value in Differential Games. American Mathematical Society, Providence (1972). Memoirs of the American Mathematical Society, No. 126

  16. Evans, L.C.: The 1-Laplacian, the \(\infty \)-Laplacian and differential games. Perspectives in Nonlinear Partial Differential Equations. Contemporary Mathematics, vol. 446, pp. 245–254. American Mathematical Society, Providence (2007)

  17. Evans, L.C., Souganidis, P.E.: Differential games and representation formulas for solutions of Hamilton-Jacobi-Isaacs equations. Indiana Univ. Math. J. 33(5), 773–797 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions, Stochastic Modelling and Applied Probability, vol. 25, 2nd edn. Springer, New York (2006)

  19. Fleming, W.H., Souganidis, P.E.: On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J. 38(2), 293–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Folland, G.B.: Real Analysis. Pure and Applied Mathematics (New York), 2nd edn. Wiley, New York (1999)

  21. Gardner, R.J.: The Brunn-Minkowski inequality. Bull. Am. Math. Soc. 39(3), 355–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gibbs, J.W.: Elementary Principles in Statistical Mechanics. Charles Scribner’s Sons, New York (1902)

    MATH  Google Scholar 

  23. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). Reprint of the 1952 edition

  24. Ivanisvili, P.: Boundary value problem and the Ehrhard inequality (2016). Preprint arXiv:1605.04840

  25. Ivanisvili, P., Volberg, A.: Bellman partial differential equation and the hill property for classical isoperimetric problems (2015). Preprint arXiv:1506.03409

  26. Kolesnikov, A.V., Milman, E.: Sharp Poincaré-type inequality for the Gaussian measure on the boundary of convex sets. In: Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, vol. 2169. Springer, Berlin (2017) (To appear)

  27. Latała, R.: A note on the Ehrhard inequality. Stud. Math. 118(2), 169–174 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Latała, R.: On some inequalities for Gaussian measures. Proceedings of the International Congress of Mathematicians. Beijing, 2002, vol. II, pp. 813–822. Higher Education Press, Beijing (2002)

  29. Ledoux, M.: The Concentration of Measure Phenomenon, Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence (2001)

    Google Scholar 

  30. Lehec, J.: Representation formula for the entropy and functional inequalities. Ann. Inst. Henri Poincaré Probab. Stat. 49(3), 885–899 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lehec, J.: Short probabilistic proof of the Brascamp-Lieb and Barthe theorems. Can. Math. Bull. 57(3), 585–597 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lifshits, M.A.: Gaussian Random Functions, Mathematics and its Applications, vol. 322. Kluwer Academic Publishers, Dordrecht (1995)

    Book  MATH  Google Scholar 

  33. Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes. I, Applications of Mathematics (New York), vol. 5, Expanded edn. Springer, Berlin (2001)

  34. Neeman, J., Paouris, G.: An interpolation proof of Ehrhard’s inequality (2016). Preprint arXiv:1605.07233

  35. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)

    Google Scholar 

  36. Święch, A.: Another approach to the existence of value functions of stochastic differential games. J. Math. Anal. Appl. 204(3), 884–897 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  37. Villani, C.: Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the anonymous referees for comments that helped improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon van Handel.

Additional information

Supported in part by NSF Grant CAREER-DMS-1148711 and by the ARO through PECASE Award W911NF-14-1-0094.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Handel, R. The Borell–Ehrhard game. Probab. Theory Relat. Fields 170, 555–585 (2018). https://doi.org/10.1007/s00440-017-0762-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00440-017-0762-4

Keywords

Mathematics Subject Classification

Navigation