Web resource on available DNA variant tests for hereditary diseases and genetic predispositions in dogs and cats: An Update

Abstract

Vast progress has been made in the clinical diagnosis and molecular basis of hereditary diseases and genetic predisposition in companion animals. The purpose of this report is to provide an update on the availability of DNA testing for hereditary diseases and genetic predispositions in dogs and cats utilizing the WSAVA-PennGen DNA Testing Database web resource (URL: http://research.vet.upenn.edu/WSAVA-LabSearch). Information on hereditary diseases, DNA tests, genetic testing laboratories and afflicted breeds added to the web-based WSAVA-PennGen DNA Testing Database was gathered. Following verification through original research and clinical studies, searching various databases on hereditary diseases in dogs and cats, and contacting laboratories offering DNA tests, the data were compared to the resource reported on in 2013. The number of molecularly defined Mendelian inherited diseases and variants in companion animals listed in the WSAVA-PennGen DNA Testing Database in 2020 drastically increased by 112% and 141%, respectively. The number of DNA variant tests offered by each laboratory has also doubled for dogs and cats. While the overall number of laboratories has only slightly increased from 43 to 47, the number of larger corporate laboratories increased, while academic laboratories have declined. In addition, there are now several laboratories that are offering breed-specific or all-breed panel tests rather than single-DNA tests for dogs and cats. This unique regularly updated searchable web-based database allows veterinary clinicians, breeders and pet owners to readily find available DNA tests, laboratories performing these DNA tests worldwide, and canine and feline breeds afflicted and also serves as a valuable resource for comparative geneticists.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. AKC Canine Health Foundation (2020). https://www.akcchf.org. Accessed Jan 2021

  2. American Kennel Club, AKC (2020). https://www.akc.org. Accessed Jan 2021

  3. Association of American Veterinary Medical Colleges, AAVMC (2019). https://www.aavmc.org. Accessed Jan 2021

  4. Awano T, Johnson GS, Wade CM et al (2009) Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis. Proc Natl Acad Sci USA 106:2794–2799

    CAS  PubMed  Article  Google Scholar 

  5. Bauer A, De Lucia M, Jagannathan V, Mezzalira G, Casal ML, Welle MM, Leeb T (2017) A large deletion in the NSDHL gene in Labrador retrievers with a congenital cornification disorder. G3 7:3115–3121

    CAS  PubMed  Article  Google Scholar 

  6. Bell JS, Cavanagh KE, Tilley LP, Smith FWK (2012) Veterinary medical guide to dog and cat breeds. Teton NewMedia, Jackson

    Google Scholar 

  7. Bradbury AM, Morrison NE, Hwang M, Cox NR, Baker HJ, Martin DR (2009) Neurodegenerative lysosomal storage disease in European Burmese cats with hexosaminidase beta-subunit deficiency. Mol Genet Metab 97:53–59

    CAS  PubMed  Article  Google Scholar 

  8. Bradbury AM, Gurda BL, Casal ML, Ponder KP, Vite CH, Haskins ME (2015) A review of gene therapy in canine and feline models of lysosomal storage disorders. Hum Gene Ther Clin Dev 26:27–37

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Brenig B, Steingräber L, Shan S et al (2019) Christmas disease in a Hovawart family resembling human hemophilia B Leyden is caused by a single nucleotide deletion in a highly conserved transcription factor binding site of the F9 gene promoter. Haematologica 104:2307–2313

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Brons AK, Henthorn PS, Raj K et al (2013) SLC3A1 and SLC7A9 mutations in autosomal recessive or dominant canine cystinuria: a new classification system. J Vet Intern Med 27:1400–1408

    PubMed  PubMed Central  Article  Google Scholar 

  11. Brooks MB, Catalfamo JL (2010) Von Willebrand disease. In: Weiss DJ, Wardrop KJ (eds) Schalm’s veterinary hematology, 6th edn. Wiley, New York, pp 612–618

    Google Scholar 

  12. Brooks MB, Gu W, Barnas JL, Ray J, Ray K (2003) A Line 1 insertion in the Factor IX gene segregates with mild hemophilia B in dogs. Mamm Genome 14:788–795

    CAS  PubMed  Article  Google Scholar 

  13. Casal M, Haskins ME (2006) Large animal models and gene therapy. Eur J Med Genet 14(3):266–272

    CAS  Google Scholar 

  14. Cat Fanciers’ Association, CFA (2020). https://cfa.org. Accessed Jan 2021

  15. Clark LA, Tsai KL, Starr AN, Nowend KL, Murphy KE (2011) A missense mutation in the 20S proteasome β2 subunit of Great Danes having harlequin coat patterning. Genomics 97:244–248

    CAS  PubMed  Article  Google Scholar 

  16. Clavero S, Bishop DF, Haskins ME, Giger U, Kauppinen R, Desnick RJ (2010) Feline acute intermittent porphyria: a phenocopy masquerading as an erythropoietic porphyria due to dominant and recessive hydroxymethylbilane synthase mutations. Hum Mol Genet 19:584–596

    CAS  PubMed  Article  Google Scholar 

  17. Clavero S, Ahuja Y, Bishop DF et al (2013) Diagnosis of feline acute intermittent porphyria presenting with erythrodontia requires molecular analyses. Vet J 198:720–722

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Donner J, Kaukonen M, Anderson H et al (2016) Genetic panel screening of nearly 100 mutations reveals new insights into the breed distribution of risk variants for canine hereditary disorders. PLoS ONE 11:e0161005

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Donner J, Anderson H, Davison S et al (2019) Correction: Frequency and distribution of 152 genetic disease variants in over 100,000 mixed breed and purebred dogs. PLoS Genet 15:e1007938

    PubMed  PubMed Central  Article  Google Scholar 

  20. Evans JP, Brinkhous KM, Brayer GD, Reisner HM, High K (1989) Canine hemophilia B resulting from a point mutation with unusual consequences. Proc Natl Acad Sci USA 86:10005–10099

    Google Scholar 

  21. Federation Cynologique Internationale, FCI (2020). http://www.fci.be/en/. Accessed Jan 2021

  22. Gandolfi B, Alamri S, Darby WG et al (2016) A dominant TRPV4 variant underlies osteochondrodysplasia in Scottish fold cats. Osteoarthr Cartil 24:1441–1450

    CAS  Article  Google Scholar 

  23. Ghielmetti G, Giger U (2020) Mycobacterium avium: an emerging pathogen for dog breeds with hereditary immunodeficiencies. Curr Clin Micro Rpt 7:67–80

    Article  Google Scholar 

  24. Giger U (2017) WSAVA hereditary disease report. BSAVA Compan Reports. March, pp 26–27

  25. Giger U (2019) Feline hereditary diseases. In: Lutz H, Kohn B, Forterre F (eds) Thieme Verlag Krankheiten der Katze, 6th edn. Stuttgart. pp 945–955

  26. Giger U, Rajpurohit Y, Wang P et al (1997) Molecular basis of erythrocyte pyruvate kinase (R-PK) deficiency in cats [abstract]. Blood 90(Suppl.):5b

    Google Scholar 

  27. Giger U, Sargan DR, McNiel EA (2006) Breed-specific hereditary diseases and genetic screening. In: Ostrander E, Giger U, Lindblad-Toh K (eds) The dog and its genome. New York, pp 249–289

  28. Gu W, Brooks M, Catalfamo J, Ray J, Ray K (1999) Two distinct mutations cause severe hemophilia B in two unrelated canine pedigrees. J Thromb Haemost 82:1270–1275

    CAS  Article  Google Scholar 

  29. Gultekin GI, Raj K, Foureman P et al (2012) Erythrocytic pyruvate kinase mutations causing hemolytic anemia, osteosclerosis, and seconday hemochromatosis in dogs. J Vet Intern Med 26:935–944

    PubMed  PubMed Central  Article  Google Scholar 

  30. Hayward JJ, Castelhano MG, Oliveira KC et al (2016) Complex disease and phenotype mapping in the domestic dog. Nat Commun 7:10460

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Human Genome Variation Society, HGVS (2020). https://varnomen.hgvs.org. Accessed Jan 2021

  32. International Partnership for Dogs, IPFD (2020). https://www.dogwellnet.com/. Accessed Jan 2021

  33. Jagannathan V, Drögemüller C, Leeb T, Dog Biomedical Variant Database Consortium (2019) A comprehensive biomedical variant catalogue based on whole genome sequences of 582 dogs and eight wolves. Anim Genet 50:695–704

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Kanae Y, Endoh D, Yamato O et al (2007) Nonsense mutation of feline beta-hexosaminidase beta-subunit (HEXB) gene causing Sandhoff disease in a family of Japanese domestic cats. Res Vet Sci 82:54–60

    CAS  PubMed  Article  Google Scholar 

  35. Karmi N, Brown EA, Hughes SS et al (2010) Estimated frequency of the canine hyperuricosuria mutation in different dog breeds. J Vet Intern Med 24:1337–1342

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Kehl A, Truchet L, Langbein-Detsch I, Müller E, Giger U (2019) Updates on practical ABC blood compatibility testing in cats. Tierarztl Prax 47:425–438

    Article  Google Scholar 

  37. Kennel Club, KC (2020). https://www.thekennelclub.org.uk. Accessed Jan 2021

  38. Kushida K, Giger U, Tsutsui T et al (2015) Real-time PCR genotyping assay for feline erythrocyte pyruvate kinase deficiency and mutant allele frequency in purebred cats in Japan. J Vet Med Sci 77:743–746

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Lequarré AS, Andersson L, André C, Fredholm M, Hitte C, Leeb T, Lohi H, Lindblad-Toh K, Georges M (2011) LUPA: a European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs. Vet J 189:155–159

    PubMed  Article  Google Scholar 

  40. Leuthard F et al (2019) A missense variant in the NSDHL gene in a Chihuahua with a congenital cornification disorder resembling inflammatory linear verrucous epidermal nevi. Anim Genet 50:768–771

    CAS  PubMed  Article  Google Scholar 

  41. Longeri M, Chiodi A, Brilli M et al (2019) Targeted genotyping by sequencing: a new way to genome profile the cat. Anim Genet 50:718–725

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Lustgarten JL, Zehnder A, Shipman W, Gancher E, Webb TL (2020) Veterinary informatics: forging the future between veterinary medicine, human medicine, and One Health initiatives—a joint paper by the Association for Veterinary Informatics (AVI) and the CTSA One Health Alliance (COHA). J Am Med Inf Assoc 3:306–317

    Google Scholar 

  43. Lyons LA (2015) DNA mutations of the cat: the good, the bad and the ugly. J Feline Med Surg 17:203–219

    PubMed  Article  Google Scholar 

  44. Martin DR, Krum BK, Varadarajan GS, Hathcock TL, Smith BF, Baker HJ (2004) An inversion of 25 base pairs causes feline GM2 gangliosidosis variant. Exp Neurol 187:30–37

    CAS  PubMed  Article  Google Scholar 

  45. Mauser AE, Whitlark J, Whitney KM, Lothrop CD (1996) A deletion mutation causes hemophilia B in Lhasa Apso dogs. Blood 88:3451–3455

    CAS  PubMed  Article  Google Scholar 

  46. Mellersh C (2012) DNA testing and domestic dogs. Mamm Genome 23:109–123

    PubMed  Article  Google Scholar 

  47. Mellersh C (2016) DNA testing man’s best friend: roles and responsibilities. Vet J 207:10–12

    PubMed  Article  Google Scholar 

  48. Minor KM, Patterson EE, Keating MK et al (2011) Presence and impact of the exercise-induced collapse associated DNM1 mutation in Labrador retrievers and other breeds. Vet J 189:214–219

    PubMed  Article  Google Scholar 

  49. Mischke R, Wilhelm C, Czwalinna A, Varvenne M, Narten K, von Depka M (2011a) Canine haemophilia A caused by a mutation leading to a stop codon. Vet Rec 169:496

    Article  Google Scholar 

  50. Mischke R, Kühnlein P, Kehl A et al (2011b) G244E in the canine factor IX gene leads to severe haemophilia B in Rhodesian Ridgebacks. Vet J 187:113–118

    CAS  PubMed  Article  Google Scholar 

  51. Muldoon LL, Neuwelt EA, Pagel MA, Weiss DL (1994) Characterization of the molecular defect in a feline model for type II GM2-gangliosidosis (Sandhoff disease). Am J Pathol 144:1109–1118

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Nicholas FW, Crook A, Sargan DR (2011) Internet resources cataloguing inherited disorders in dogs. Vet J 189:132–135

    PubMed  Article  Google Scholar 

  53. Ogawa M, Uchida K, Park ES et al (2011) Immunohistochemical observation of canine degenerative myelopathy in two Pembroke Welsh Corgi dogs. J Vet Med Sci 73:1275–1279

    PubMed  Article  Google Scholar 

  54. Online Mendelian Inheritance in Animals (OMIA©) (2020) Sydney School of Veterinary Science. https://www.OMIA.org. Accessed Jan 2021

  55. Online Mendelian Inheritance in Man, OMIM (2019) McKusick-Nathans Institute of Genetic Medicine, John Hopkins University. https://www.omim.org. Accessed Jan 2021

  56. Orthopedic Foundation for Animals, OFA (2020). https://www.ofa.org. Accessed Jan 2021

  57. Ostrander EA, Wayne RK, Freedman AH, Davis BW (2017) Demographic history, selection and functional diversity of the canine genome. Nat Rev Genet 18:105–720

    Article  CAS  Google Scholar 

  58. RStudio Team (2020) RStudio: integrated development for R. RStudio, PBC, Boston, MA. http://www.rstudio.com. Accessed Dec 2020

  59. Shaffer LG, Sundin K, Geretschlaeger A et al (2019a) Standards and guidelines for canine clinical genetic testing laboratories. Hum Genet 138:493–499

    CAS  PubMed  Article  Google Scholar 

  60. Shaffer LG, Geretschlaeger A, Ramirez CJ et al (2019b) Quality assurance checklist and additional considerations for canine clinical genetic testing laboratories: a follow-up to the published standards and guidelines. Hum Genet 138:501–508

    PubMed  PubMed Central  Article  Google Scholar 

  61. Skelly BJ, Wallace M, Rajpurohit YR, Wang P, Giger U (1999) Identification of a 6 base pair insertion in West Highland White Terriers with erythrocyte pyruvate kinase deficiency. Am J Vet Res 60:1169–1172

    CAS  PubMed  Google Scholar 

  62. Slutsky J, Raj K, Yuhnke S, Bell J, Fretwell N, Hedhammar A, Wade C, Giger U (2013) A web resource on DNA tests for canine and feline hereditary diseases. Vet J 197:182–187

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. Stenson PD, Mort M, Ball EV et al (2017) The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet 136:665–677

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Switonski M (2020) Impact of gene therapy for canine monogenic diseases on the progress of preclinical studies. J Appl Genet 61:179–186

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Takanosu M, Takanosu T, Suzuki H, Suzuki K (2008) Incomplete dominant osteochondrodysplasia in heterozygous Scottish Fold cats. J Small Anim Pract 49:197–199

    CAS  PubMed  Article  Google Scholar 

  66. The International Cat Association, TICA (2020). https://www.tica.org. Accessed Jan 2021

  67. Valle DL, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA (2019) The Online Metabolic and Molecular Bases of Inherited Disease (OMMBID). McGraw Hill, New York

    Google Scholar 

  68. Winn Feline Foundation (2020). https://www.winnfelinefoundation.org. Accessed Jan 2021

  69. WSAVA-PennGen DNA Testing Database (2021). http://research.vet.upenn.edu/WSAVA-LabSearch. Accessed Jan 2021

  70. Zheng K, Thorner PS, Marrano P et al (1994) Canine X chromosome-linked hereditary nephritis: a genetic model for human X-linked hereditary nephritis resulting from a single base mutation in the gene encoding the alpha 5 chain of collagen type IV. Proc Natl Acad Sci USA 91:3989–3993

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The contributions by the staff of all the laboratories as well as the many colleagues who provided invaluable information regarding testing and disease are greatly appreciated. We also thank Leslie King, PhD for careful editing assistance.

Funding

Supported in part by Mars, PennGen, and World Small Animal Veterinary Association (WSAVA) as well as the National Institutes of Health (NIH OD 010939).

Author information

Affiliations

Authors

Contributions

All the authors made substantial contributions to conception and design, acquisition and extraction of data and for analysis and interpretation of the results. Each author agrees to be accountable for all aspects of the accuracy or integrity of the work. Specifically, UG developed the concept, JLR and JC gathered and entered the information, JLR and KR verified the gene variants, JLR, JC, KR, JS, and SY maintained the web-based resource, JLR, JC, and UG reviewed and analyzed the data and wrote the first drafts of the manuscript, and all the authors contributed and approved the final manuscript.

Corresponding author

Correspondence to Urs Giger.

Ethics declarations

Conflict of interest

The authors are or were associated with the academic PennGen Laboratories which offer DNA, metabolic, and hematological testing for certain hereditary diseases in dogs and cats.

Data availability statement

The datasets generated and analyzed are available upon request from the authors.

Animal use approval

Not applicable as neither animals nor tissue samples were used in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 421 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rokhsar, J.L., Canino, J., Raj, K. et al. Web resource on available DNA variant tests for hereditary diseases and genetic predispositions in dogs and cats: An Update. Hum Genet (2021). https://doi.org/10.1007/s00439-021-02256-5

Download citation