A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse

Abstract

Male infertility is a heterogeneous condition of largely unknown etiology that affects at least 7% of men worldwide. Classical genetic approaches and emerging next-generation sequencing studies support genetic variants as a frequent cause of male infertility. Meanwhile, the barriers to transmission of this disease mean that most individual genetic cases will be rare, but because of the large percentage of the genome required for spermatogenesis, the number of distinct causal mutations is potentially large. Identifying bona fide causes of male infertility thus requires advanced filtering techniques to select for high-probability candidates, including the ability to test causality in animal models. The mouse remains the gold standard for defining the genotype–phenotype connection in male fertility. Here, we present a best practice guide consisting of (a) major points to consider when interpreting next-generation sequencing data performed on infertile men, and, (b) a systematic strategy to categorize infertility types and how they relate to human male infertility. Phenotyping infertility in mice can involve investigating the function of multiple cell types across the testis and epididymis, as well as sperm function. These findings will feed into the diagnosis and treatment of male infertility as well as male health broadly.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abe K, Takano H, Ito T (1983) Response of epididymal duct to the temporary depletion of spermatozoa induced by testicular irradiation in mice. Anat Rec 207:17–24. https://doi.org/10.1002/ar.1092070103

    CAS  Article  PubMed  Google Scholar 

  2. Aitken RJ, Nixon B (2013) Sperm capacitation: a distant landscape glimpsed but unexplored. Mol Hum Reprod 19:785–793. https://doi.org/10.1093/molehr/gat067

    CAS  Article  PubMed  Google Scholar 

  3. Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M (1995) Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci 108(Pt 5):2017–2025

    CAS  PubMed  Google Scholar 

  4. Alipoor FJ, Gilani MA, Eftekhari-Yazdi P, Hampa AD, Hosseinifar H, Alipour H, Panah ML (2009) Achieving high survival rate following cryopreservation after isolation of prepubertal mouse spermatogonial cells. J Assist Reprod Genet 26:143–149. https://doi.org/10.1007/s10815-009-9298-6

    Article  PubMed  PubMed Central  Google Scholar 

  5. Alvau A et al (2016) The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm. Development 143:2325–2333. https://doi.org/10.1242/dev.136499

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Amendola LM et al (2016) Performance of ACMG-AMP variant-interpretation guidelines among nine laboratories in the clinical sequencing exploratory research consortium. Am J Hum Genet 99:247. https://doi.org/10.1016/j.ajhg.2016.06.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Asquith KL, Baleato RM, McLaughlin EA, Nixon B, Aitken RJ (2004) Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci 117:3645–3657. https://doi.org/10.1242/jcs.01214

    CAS  Article  PubMed  Google Scholar 

  8. Babu SR, Sadhnani MD, Swarna M, Padmavathi P, Reddy PP (2004) Evaluation of FSH, LH and testosterone levels in different subgroups of infertile males. Indian J Clin Biochem 19:45–49. https://doi.org/10.1007/BF02872388

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Baccetti B, Burrini AG, Pallini V, Renieri T (1981) Human dynein and sperm pathology. J Cell Biol 88:102–107

    CAS  PubMed  Google Scholar 

  10. Baker MA, Hetherington L, Aitken RJ (2006) Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci 119:3182–3192. https://doi.org/10.1242/jcs.03055

    CAS  Article  PubMed  Google Scholar 

  11. Baker MA, Hetherington L, Weinberg A, Velkov T (2014) Phosphopeptide analysis of rodent epididymal spermatozoa. J Vis Exp. https://doi.org/10.3791/51546

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755. https://doi.org/10.1038/nrg3031

    CAS  Article  PubMed  Google Scholar 

  13. Bamshad MJ, Nickerson DA, Chong JX (2019) Mendelian gene discovery: fast and furious with no end in sight. Am J Hum Genet 105:448–455. https://doi.org/10.1016/j.ajhg.2019.07.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Batiz LF et al (2009) Sperm from hyh mice carrying a point mutation in alphaSNAP have a defect in acrosome reaction. PLoS ONE 4:e4963. https://doi.org/10.1371/journal.pone.0004963

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Behringer R, Gertsenstein M, Nagy KV, Nagy A (2016) Selecting female mice in estrus and checking plugs. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot092387

    Article  PubMed  Google Scholar 

  16. Bellve AR, Millette CF, Bhatnagar YM, O'Brien DA (1977) Dissociation of the mouse testis and characterization of isolated spermatogenic cells. J Histochem Cytochem 25:480–494. https://doi.org/10.1177/25.7.893996

    CAS  Article  PubMed  Google Scholar 

  17. Ben Khelifa M et al (2014) Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 94:95–104. https://doi.org/10.1016/j.ajhg.2013.11.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Biggers JD, Whitten WK, Whittingham DG (1971) The culture of mouse embryos in vitro. In: Methods in mammalian embryology. Freeman, San Francisco

  19. Bind RH, Minney SM, Rosenfeld S, Hallock RM (2013) The role of pheromonal responses in rodent behavior: future directions for the development of laboratory protocols. J Am Assoc Lab Anim Sci 52:124–129

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Bjorkgren I et al (2016) Targeted inactivation of the mouse epididymal beta-defensin 41 alters sperm flagellar beat pattern and zona pellucida binding. Mol Cell Endocrinol 427:143–154. https://doi.org/10.1016/j.mce.2016.03.013

    CAS  Article  PubMed  Google Scholar 

  21. Blanchard TL, Johnson L (1997) Increased germ cell degeneration and reduced germ cell: sertoli cell ratio in stallions with low sperm production. Theriogenology 47:665–677

    CAS  PubMed  Google Scholar 

  22. Blomqvist SR, Vidarsson H, Soder O, Enerback S (2006) Epididymal expression of the forkhead transcription factor Foxi1 is required for male fertility. EMBO J 25:4131–4141. https://doi.org/10.1038/sj.emboj.7601272

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Bolor H, Zhao WD, Ishikawa A, Wakasugi N (2005) Arrest of spermatogenesis at the early meiotic stage in the small testis mutant (Smt) mice. Exp Anim 54:327–337

    CAS  PubMed  Google Scholar 

  24. Breton S, Nair AV, Battistone MA (2019) Epithelial dynamics in the epididymis: role in the maturation, protection, and storage of spermatozoa. Andrology 7:631–643. https://doi.org/10.1111/andr.12632

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Brokaw CJ, Kamiya R (1987) Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton 8:68–75. https://doi.org/10.1002/cm.970080110

    CAS  Article  PubMed  Google Scholar 

  26. Browning BL, Browning SR (2013) Detecting identity by descent and estimating genotype error rates in sequence data. Am J Hum Genet 93:840–851. https://doi.org/10.1016/j.ajhg.2013.09.014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Burns KH, Matzuk MM (2002) Minireview: genetic models for the study of gonadotropin actions. Endocrinology 143:2823–2835. https://doi.org/10.1210/endo.143.8.8928

    CAS  Article  PubMed  Google Scholar 

  28. Busada JT et al (2016) Rhox13 is required for a quantitatively normal first wave of spermatogenesis in mice. Reproduction 152:379–388. https://doi.org/10.1530/REP-16-0268

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Bustamante-Marin XM et al (2019) Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. J Hum Genet. https://doi.org/10.1038/s10038-019-0686-1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Camerino G, Parma P, Radi O, Valentini S (2006) Sex determination and sex reversal. Curr Opin Genet Dev 16:289–292. https://doi.org/10.1016/j.gde.2006.04.014

    CAS  Article  PubMed  Google Scholar 

  31. Carofiglio F et al (2018) Repair of exogenous DNA double-strand breaks promotes chromosome synapsis in SPO11-mutant mouse meiocytes, and is altered in the absence of HORMAD1. DNA Repair (Amst) 63:25–38. https://doi.org/10.1016/j.dnarep.2018.01.007

    CAS  Article  Google Scholar 

  32. Carrera A, Gerton GL, Moss SB (1994) The major fibrous sheath polypeptide of mouse sperm: structural and functional similarities to the A-kinase anchoring proteins. Dev Biol 165:272–284. https://doi.org/10.1006/dbio.1994.1252

    CAS  Article  PubMed  Google Scholar 

  33. Carss K, Goldstein D, Aggarwal V, Petrovski S (2020) Variant interpretation and genomic medicine. In: Handbook of statistical genomics, pp 761–786. 10.1002/9781119487845.ch27

  34. Carvajal G et al (2018) Impaired male fertility and abnormal epididymal epithelium differentiation in mice lacking CRISP1 and CRISP4. Sci Rep 8:17531. https://doi.org/10.1038/s41598-018-35719-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Ceballos FC, Hazelhurst S, Ramsay M (2019) Runs of homozygosity in sub-Saharan African populations provide insights into complex demographic histories. Hum Genet 138:1123–1142. https://doi.org/10.1007/s00439-019-02045-1

    CAS  Article  PubMed  Google Scholar 

  36. Chan AL et al (2017) Germline stem cell activity is sustained by SALL4-dependent silencing of distinct tumor suppressor genes stem. Cell Rep 9:956–971. https://doi.org/10.1016/j.stemcr.2017.08.001

    CAS  Article  Google Scholar 

  37. Chan F, Oatley MJ, Kaucher AV, Yang QE, Bieberich CJ, Shashikant CS, Oatley JM (2014) Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev 28:1351–1362. https://doi.org/10.1101/gad.240465.114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Chemes HE (2013) Ultrastructural analysis of testicular tissue and sperm by transmission and scanning electron microscopy. Methods Mol Biol 927:321–348. https://doi.org/10.1007/978-1-62703-038-0_29

    CAS  Article  PubMed  Google Scholar 

  39. Chemes HE, Puigdomenech ET, Carizza C, Olmedo SB, Zanchetti F, Hermes R (1999) Acephalic spermatozoa and abnormal development of the head-neck attachment: a human syndrome of genetic origin. Hum Reprod 14:1811–1818

    CAS  PubMed  Google Scholar 

  40. Cheng JM et al (2018) Role of WNT signaling in epididymal sperm maturation. J Assist Reprod Genet 35:229–236. https://doi.org/10.1007/s10815-017-1066-4

    Article  PubMed  Google Scholar 

  41. Cherry LM, Hsu TC (1984) Antitubulin immunofluorescence studies of spermatogenesis in the mouse. Chromosoma 90:265–274. https://doi.org/10.1007/bf00287034

    CAS  Article  PubMed  Google Scholar 

  42. Chiani F et al (2019) Functional loss of Ccdc1 51 leads to hydrocephalus in a mouse model of primary ciliary dyskinesia. Dis Model Mech 2019:12. https://doi.org/10.1242/dmm.038489

    CAS  Article  Google Scholar 

  43. Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, Eddy EM (2001) Haploinsufficiency of protamine-1 or -2 causes infertility in mice. Nat Genet 28:82–86. https://doi.org/10.1038/88313

    CAS  Article  PubMed  Google Scholar 

  44. Cobice DF, Livingstone DE, Mackay CL, Goodwin RJ, Smith LB, Walker BR, Andrew R (2016) Spatial localization and quantitation of androgens in mouse testis by mass spectrometry imaging. Anal Chem 88:10362–10367. https://doi.org/10.1021/acs.analchem.6b02242

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Colley SM et al (2013) Loss of the nuclear receptor corepressor SLIRP compromises male fertility. PLoS ONE 8:e70700. https://doi.org/10.1371/journal.pone.0070700

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Cornwall GA (2009) New insights into epididymal biology and function. Hum Reprod Update 15:213–227. https://doi.org/10.1093/humupd/dmn055

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Cotton L, Gibbs GM, Sanchez-Partida LG, Morrison JR, de Kretser DM, O'Bryan MK (2006) FGFR-1 [corrected] signaling is involved in spermiogenesis and sperm capacitation. J Cell Sci 119:75–84. https://doi.org/10.1242/jcs.02704

    CAS  Article  PubMed  Google Scholar 

  48. Coutton C et al (2012) MLPA and sequence analysis of DPY19L2 reveals point mutations causing globozoospermia. Hum Reprod 27:2549–2558. https://doi.org/10.1093/humrep/des160

    CAS  Article  PubMed  Google Scholar 

  49. Coutton C et al (2019) Bi-allelic mutations in ARMC2 lead to severe astheno-teratozoospermia due to sperm flagellum malformations in humans and mice. Am J Hum Genet 104:331–340. https://doi.org/10.1016/j.ajhg.2018.12.013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Cuppens H, Cassiman JJ (2004) CFTR mutations and polymorphisms in male infertility. Int J Androl 27:251–256. https://doi.org/10.1111/j.1365-2605.2004.00485.x

    CAS  Article  PubMed  Google Scholar 

  51. Da Ros VG et al (2008) Impaired sperm fertilizing ability in mice lacking cysteine-RIch secretory protein 1 (CRISP1). Dev Biol 320:12–18. https://doi.org/10.1016/j.ydbio.2008.03.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. De Grava KW, Klinefelter GR (2014) Interpreting histopathology in the epididymis. Spermatogenesis 4:e979114. https://doi.org/10.4161/21565562.2014.979114

    Article  Google Scholar 

  53. Demott RP, Suarez SS (1992) Hyperactivated sperm progress in the mouse oviduct. Biol Reprod 46:779–785. https://doi.org/10.1095/biolreprod46.5.779

    CAS  Article  PubMed  Google Scholar 

  54. Denison FC, Smith LB, Muckett PJ, O'Hara L, Carling D, Woods A (2011) LKB1 is an essential regulator of spermatozoa release during spermiation in the mammalian testis. PLoS ONE 6:e28306. https://doi.org/10.1371/journal.pone.0028306

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Dettin L, Ravindranath N, Hofmann MC, Dym M (2003) Morphological characterization of the spermatogonial subtypes in the neonatal mouse testis. Biol Reprod 69:1565–1571. https://doi.org/10.1095/biolreprod.103.016394

    CAS  Article  PubMed  Google Scholar 

  56. Dia F, Strange T, Liang J, Hamilton J, Berkowitz KM (2017) Preparation of meiotic chromosome spreads from mouse spermatocytes. J Vis Exp. https://doi.org/10.3791/55378

    Article  PubMed  PubMed Central  Google Scholar 

  57. Diercks AK, Schwab A, Rittgen W, Kruspel A, Heuss E, Schenkel J (2010) Environmental influences on the production of pre-implantation embryos. Theriogenology 73:1238–1243. https://doi.org/10.1016/j.theriogenology.2009.12.003

    Article  PubMed  Google Scholar 

  58. Dimitriadis F, Tsiampali C, Chaliasos N, Tsounapi P, Takenaka A, Sofikitis N (2015) The Sertoli cell as the orchestra conductor of spermatogenesis: spermatogenic cells dance to the tune of testosterone. Hormones (Athens) 14:479–503. https://doi.org/10.14310/horm.2002.1633

    Article  Google Scholar 

  59. Djureinovic D, Fagerberg L, Hallstrom B, Danielsson A, Lindskog C, Uhlen M, Ponten F (2014) The human testis-specific proteome defined by transcriptomics and antibody-based profiling. Mol Hum Reprod 20:476–488. https://doi.org/10.1093/molehr/gau018

    CAS  Article  PubMed  Google Scholar 

  60. Dooher GB, Bennett D (1977) Spermiogenesis and spermatozoa in sterile mice carrying different lethal T/t locus haplotypes: a transmission and scanning electron microscopic study. Biol Reprod 17:269–288

    CAS  PubMed  Google Scholar 

  61. Dunleavy JEM et al (2017) Katanin-like 2 (KATNAL2) functions in multiple aspects of haploid male germ cell development in the mouse. PLoS Genet 13:e1007078. https://doi.org/10.1371/journal.pgen.1007078

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Dunleavy JEM, O'Connor AE, O'Bryan MK (2019) An optimised STAPUT method for the purification of mouse spermatocyte and spermatid populations. Mol Hum Reprod. https://doi.org/10.1093/molehr/gaz056

    Article  PubMed  Google Scholar 

  63. Eddy EM, Washburn TF, Bunch DO, Goulding EH, Gladen BC, Lubahn DB, Korach KS (1996) Targeted disruption of the estrogen receptor gene in male mice causes alteration of spermatogenesis and infertility. Endocrinology 137:4796–4805. https://doi.org/10.1210/endo.137.11.8895349

    CAS  Article  PubMed  Google Scholar 

  64. Eggers S et al (2016) Disorders of sex development: insights from targeted gene sequencing of a large international patient cohort. Genome Biol 17:243. https://doi.org/10.1186/s13059-016-1105-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Elkhatib RA et al (2017) Homozygous deletion of SUN5 in three men with decapitated spermatozoa. Hum Mol Genet 26:3167–3171. https://doi.org/10.1093/hmg/ddx200

    CAS  Article  PubMed  Google Scholar 

  66. Escoffier J et al (2016) Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Hum Mol Genet 25:878–891. https://doi.org/10.1093/hmg/ddv617

    CAS  Article  PubMed  Google Scholar 

  67. Ewen KA, Koopman P (2010) Mouse germ cell development: from specification to sex determination. Mol Cell Endocrinol 323:76–93. https://doi.org/10.1016/j.mce.2009.12.013

    CAS  Article  PubMed  Google Scholar 

  68. Fang X et al (2019) Proteomics and single-cell RNA analysis of Akap4-knockout mice model confirm indispensable role of Akap4 in spermatogenesis. Dev Biol 454:118–127. https://doi.org/10.1016/j.ydbio.2019.06.017

    CAS  Article  PubMed  Google Scholar 

  69. Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44:394–436

    CAS  PubMed  Google Scholar 

  70. Fayomi AP, Orwig KE (2018) Spermatogonial stem cells and spermatogenesis in mice, monkeys and men. Stem Cell Res 29:207–214. https://doi.org/10.1016/j.scr.2018.04.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Feng CA, Spiller C, Merriner DJ, O'Bryan MK, Bowles J, Koopman P (2017) SOX30 is required for male fertility in mice. Sci Rep 7:17619. https://doi.org/10.1038/s41598-017-17854-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Fine AD, Ball RL, Fujiwara Y, Handel MA, Carter GW (2019) Uncoupling of transcriptomic and cytological differentiation in mouse spermatocytes with impaired meiosis. Mol Biol Cell 30:717–728. https://doi.org/10.1091/mbc.E18-10-0681

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Firman RC, Simmons LW (2010) Sperm midpiece length predicts sperm swimming velocity in house mice. Biol Lett 6:513–516. https://doi.org/10.1098/rsbl.2009.1027

    Article  PubMed  PubMed Central  Google Scholar 

  74. Fujihara Y, Satouh Y, Inoue N, Isotani A, Ikawa M, Okabe M (2012) SPACA1-deficient male mice are infertile with abnormally shaped sperm heads reminiscent of globozoospermia. Development 139:3583–3589. https://doi.org/10.1242/dev.081778

    CAS  Article  PubMed  Google Scholar 

  75. Garcia TX, Farmaha JK, Kow S, Hofmann MC (2014) RBPJ in mouse Sertoli cells is required for proper regulation of the testis stem cell niche. Development 141:4468–4478. https://doi.org/10.1242/dev.113969

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Garner DL, Johnson LA (1995) Viability assessment of mammalian sperm using SYBR-14 and propidium iodide. Biol Reprod 53:276–284

    CAS  PubMed  Google Scholar 

  77. Gibbs GM et al (2011) Cysteine-rich secretory protein 4 is an inhibitor of transient receptor potential M8 with a role in establishing sperm function. Proc Natl Acad Sci USA 108:7034–7039. https://doi.org/10.1073/pnas.1015935108

    Article  PubMed  Google Scholar 

  78. Gibson MJ, Wu TJ, Miller GM, Silverman AJ (1997) What nature's knockout teaches us about GnRH activity: hypogonadal mice and neuronal grafts. Horm Behav 31:212–220. https://doi.org/10.1006/hbeh.1997.1387

    CAS  Article  PubMed  Google Scholar 

  79. Gold E et al (2009) Activin C antagonizes activin A in vitro and overexpression leads to pathologies in vivo. Am J Pathol 174:184–195. https://doi.org/10.2353/ajpath.2009.080296

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Goodson SG, Zhang Z, Tsuruta JK, Wang W, O'Brien DA (2011) Classification of mouse sperm motility patterns using an automated multiclass support vector machines model. Biol Reprod 84:1207–1215. https://doi.org/10.1095/biolreprod.110.088989

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Goulding EH, Hewitt SC, Nakamura N, Hamilton K, Korach KS, Eddy EM (2010) Ex3alphaERKO male infertility phenotype recapitulates the alphaERKO male phenotype. J Endocrinol 207:281–288. https://doi.org/10.1677/JOE-10-0290

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Griswold MD (2016) Spermatogenesis: the commitment to meiosis. Physiol Rev 96:1–17. https://doi.org/10.1152/physrev.00013.2015

    CAS  Article  PubMed  Google Scholar 

  83. Gusev A et al (2009) Whole population, genome-wide mapping of hidden relatedness. Genome Res 19:318–326. https://doi.org/10.1101/gr.081398.108

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Handel MA, Schimenti JC (2010) Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet 11:124–136. https://doi.org/10.1038/nrg2723

    CAS  Article  PubMed  Google Scholar 

  85. Handelsman DJ (2017) Mass spectrometry, immunoassay and valid steroid measurements in reproductive medicine and science. Hum Reprod 32:1147–1150. https://doi.org/10.1093/humrep/dex078

    CAS  Article  PubMed  Google Scholar 

  86. Hansen JN, Rassmann S, Jikeli JF, Wachten D (2018) SpermQ(-)A simple analysis software to comprehensively study flagellar beating and sperm steering. Cells 2018:8. https://doi.org/10.3390/cells8010010

    Article  Google Scholar 

  87. Hara K, Nakagawa T, Enomoto H, Suzuki M, Yamamoto M, Simons BD, Yoshida S (2014) Mouse spermatogenic stem cells continually interconvert between equipotent singly isolated and syncytial states. Cell Stem Cell 14:658–672. https://doi.org/10.1016/j.stem.2014.01.019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Harbuz R et al (2011) A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet 88:351–361. https://doi.org/10.1016/j.ajhg.2011.02.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Harris T, Marquez B, Suarez S, Schimenti J (2007) Sperm motility defects and infertility in male mice with a mutation in Nsun7, a member of the Sun domain-containing family of putative RNA methyltransferases. Biol Reprod 77:376–382. https://doi.org/10.1095/biolreprod.106.058669

    CAS  Article  PubMed  Google Scholar 

  90. Hayashida K, Omagari K, Masuda J, Hazama H, Kadokawa Y, Ohba K, Kohno S (2005) The sperm mitochondria-specific translocator has a key role in maternal mitochondrial inheritance. Cell Biol Int 29:472–481. https://doi.org/10.1016/j.cellbi.2004.09.016

    CAS  Article  PubMed  Google Scholar 

  91. He Z, Kokkinaki M, Jiang J, Zeng W, Dobrinski I, Dym M (2012) Isolation of human male germ-line stem cells using enzymatic digestion and magnetic-activated cell sorting. Methods Mol Biol 825:45–57. https://doi.org/10.1007/978-1-61779-436-0_4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Henle W, Henle G, Chambers LA (1938) Studies on the Antigenic structure of some mammalian spermatozoa. J Exp Med 68:335–352

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Hermo L, Robaire B (2002) Epididymal cell types and their functions. In: Robaire B, Hinton BT (eds) The epididymis: from molecules to clinical practice. Kluwer, New York

  94. Hermo L, Oko R, Hecht NB (1991) Differential post-translational modifications of microtubules in cells of the seminiferous epithelium of the rat: a light and electron microscope immunocytochemical study. Anat Rec 229(1):31–50

    CAS  PubMed  Google Scholar 

  95. Hess RA, Moore BJ (1993) Histological methods for the evaluation of the testis. Methods in reproductive toxicology. Academic Press, Cambridge

    Google Scholar 

  96. Higgy NA, Pastoor T, Renz C, Tarnasky HA, Van der Hoorn FA (1994) Testis-specific RT7 protein localizes to the sperm tail and associates with itself. Biol Reprod 50:1357–1366. https://doi.org/10.1095/biolreprod50.6.1357

    CAS  Article  PubMed  Google Scholar 

  97. Howat WJ, Wilson BA (2014) Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods 70:12–19. https://doi.org/10.1016/j.ymeth.2014.01.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Howe K, FitzHarris G (2013) A non-canonical mode of microtubule organization operates throughout pre-implantation development in mouse. Cell Cycle 12:1616–1624. https://doi.org/10.4161/cc.24755

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Hsu MK, Lin HY, Chen FC (2017) NMD Classifier: a reliable and systematic classification tool for nonsense-mediated decay events. PLoS ONE 12:e0174798. https://doi.org/10.1371/journal.pone.0174798

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Hu H et al (2014) A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data. Nat Biotechnol 32:663–669. https://doi.org/10.1038/nbt.2895

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Hu J, Merriner DJ, O'Connor AE, Houston BJ, Furic L, Hedger MP, O'Bryan MK (2018) Epididymal cysteine-rich secretory proteins are required for epididymal sperm maturation and optimal sperm function. Mol Hum Reprod 24:111–122. https://doi.org/10.1093/molehr/gay001

    CAS  Article  PubMed  Google Scholar 

  102. Hubert FX et al (2009) Aire-deficient C57BL/6 mice mimicking the common human 13-base pair deletion mutation present with only a mild autoimmune phenotype. J Immunol 182:3902–3918. https://doi.org/10.4049/jimmunol.0802124

    CAS  Article  PubMed  Google Scholar 

  103. Ihara M et al (2005) Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 8:343–352. https://doi.org/10.1016/j.devcel.2004.12.005

    CAS  Article  PubMed  Google Scholar 

  104. Ikami K, Tokue M, Sugimoto R, Noda C, Kobayashi S, Hara K, Yoshida S (2015) Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis. Development 142:1582–1592. https://doi.org/10.1242/dev.118695

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434:234–238. https://doi.org/10.1038/nature03362

    CAS  Article  PubMed  Google Scholar 

  106. Inoue N, Ikawa M, Nakanishi T, Matsumoto M, Nomura M, Seya T, Okabe M (2003) Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Mol Cell Biol 23:2614–2622

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Inoue N, Okabe M (2008) Sperm-egg fusion assay in mammals. Methods Mol Biol 475:335–345. https://doi.org/10.1007/978-1-59745-250-2_19

    Article  PubMed  Google Scholar 

  108. Jamsai D, Clark BJ, Smith SJ, Whittle B, Goodnow CC, Ormandy CJ, O'Bryan MK (2013) A missense mutation in the transcription factor ETV5 leads to sterility, increased embryonic and perinatal death, postnatal growth restriction, renal asymmetry and polydactyly in the mouse. PLoS ONE 8:e77311. https://doi.org/10.1371/journal.pone.0077311

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Jean-Faucher C, Berger M, de Turckheim M, Veyssiere G, Jean C (1978) Developmental patterns of plasma and testicular testosterone in mice from birth to adulthood. Acta Endocrinol (Copenh) 89:780–788

    CAS  Google Scholar 

  110. Jelinsky SA et al (2007) The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides. Biol Reprod 76:561–570. https://doi.org/10.1095/biolreprod.106.057323

    CAS  Article  PubMed  Google Scholar 

  111. Jin J, Jin N, Zheng H, Ro S, Tafolla D, Sanders KM, Yan W (2007) Catsper3 and Catsper4 are essential for sperm hyperactivated motility and male fertility in the mouse. Biol Reprod 77:37–44. https://doi.org/10.1095/biolreprod.107.060186

    CAS  Article  PubMed  Google Scholar 

  112. Johnston DS, Jelinsky SA, Bang HJ, DiCandeloro P, Wilson E, Kopf GS, Turner TT (2005) The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biol Reprod 73:404–413. https://doi.org/10.1095/biolreprod.105.039719

    CAS  Article  PubMed  Google Scholar 

  113. Joseph A, Shur BD, Ko C, Chambon P, Hess RA (2010) Epididymal hypo-osmolality induces abnormal sperm morphology and function in the estrogen receptor alpha knockout mouse. Biol Reprod 82:958–967. https://doi.org/10.1095/biolreprod.109.080366

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Juma AR et al (2017) PLAG1 deficiency impairs spermatogenesis and sperm motility in mice. Sci Rep 7:5317. https://doi.org/10.1038/s41598-017-05676-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Jun HJ et al (2014) ROS1 signaling regulates epithelial differentiation in the epididymis. Endocrinology 155:3661–3673. https://doi.org/10.1210/en.2014-1341

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  116. Kallajoki M, Virtanen I, Suominen J (1986) The fate of acrosomal staining during the acrosome reaction of human spermatozoa as revealed by a monoclonal antibody and PNA-lectin. Int J Androl 9:181–194

    CAS  PubMed  Google Scholar 

  117. Kaprara A, Huhtaniemi IT (2018) The hypothalamus-pituitary-gonad axis: tales of mice and men. Metabolism 86:3–17. https://doi.org/10.1016/j.metabol.2017.11.018

    CAS  Article  PubMed  Google Scholar 

  118. Kasak L et al (2018) Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia. Am J Hum Genet 103:200–212. https://doi.org/10.1016/j.ajhg.2018.07.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Katen AL, Stanger SJ, Anderson AL, Nixon B, Roman SD (2016) Chronic acrylamide exposure in male mice induces DNA damage to spermatozoa. Potential for amelioration by resveratrol. Reprod Toxicol 63:1–12. https://doi.org/10.1016/j.reprotox.2016.05.004

    CAS  Article  PubMed  Google Scholar 

  120. Kerr JB, Loveland KL, O‘Bryan MK, Kretser DM (2006) Cytology of the testis and intrinsic control mechanisms. Knobil and Neill’s Physiology of Reproduction. Academic Press, Cambridge

    Google Scholar 

  121. Kherraf ZE et al (2019) Whole exome sequencing of men with multiple morphological abnormalities of the sperm flagella reveals novel homozygous QRICH2 mutations. Clin Genet 96:394–401. https://doi.org/10.1111/cge.13604

    CAS  Article  PubMed  Google Scholar 

  122. Kierszenbaum AL, Rivkin E, Tres LL (2003) Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 14:4628–4640. https://doi.org/10.1091/mbc.e03-04-0226

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Kim MO et al (2007) Ectopic expression of tethered human follicle-stimulating hormone (hFSH) gene in transgenic mice. Transgenic Res 16:65–75. https://doi.org/10.1007/s11248-006-9031-5

    CAS  Article  PubMed  Google Scholar 

  124. Kirichok Y, Navarro B, Clapham DE (2006) Whole-cell patch-clamp measurements of spermatozoa reveal an alkaline-activated Ca2+ channel. Nature 439:737–740. https://doi.org/10.1038/nature04417

    CAS  Article  PubMed  Google Scholar 

  125. Kissel H, Georgescu MM, Larisch S, Manova K, Hunnicutt GR, Steller H (2005) The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 8:353–364. https://doi.org/10.1016/j.devcel.2005.01.021

    CAS  Article  PubMed  Google Scholar 

  126. Kojima Y, Tam OH, Tam PP (2014) Timing of developmental events in the early mouse embryo. Semin Cell Dev Biol 34:65–75. https://doi.org/10.1016/j.semcdb.2014.06.010

    CAS  Article  PubMed  Google Scholar 

  127. Koscinski I et al (2011) DPY19L2 deletion as a major cause of globozoospermia. Am J Hum Genet 88:344–350. https://doi.org/10.1016/j.ajhg.2011.01.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. Kotaja N et al (2004) Preparation, isolation and characterization of stage-specific spermatogenic cells for cellular and molecular analysis. Nat Methods 1:249–254. https://doi.org/10.1038/nmeth1204-249

    CAS  Article  PubMed  Google Scholar 

  129. Kumar TR (2005) What have we learned about gonadotropin function from gonadotropin subunit and receptor knockout mice? Reproduction 130:293–302. https://doi.org/10.1530/rep.1.00660

    CAS  Article  PubMed  Google Scholar 

  130. La HM et al (2018) GILZ-dependent modulation of mTORC1 regulates spermatogonial maintenance. Development. https://doi.org/10.1242/dev.165324

    Article  PubMed  Google Scholar 

  131. Laing MA, Coonrod S, Hinton BT, Downie JW, Tozer R, Rudnicki MA, Hassell JA (2000) Male sexual dysfunction in mice bearing targeted mutant alleles of the PEA3 ets gene. Mol Cell Biol 20:9337–9345

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Lau IF, Saksena SK, Chang MC (1978) Effects of hCG on serum levels of testosterone, dihydrotestosterone and androstenedione in male mice. Horm Res 9:169–175. https://doi.org/10.1159/000178910

    CAS  Article  PubMed  Google Scholar 

  133. Lee S, Abecasis GR, Boehnke M, Lin X (2014) Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet 95:5–23. https://doi.org/10.1016/j.ajhg.2014.06.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  134. Lehti MS, Sironen A (2016) Formation and function of the manchette and flagellum during spermatogenesis. Reproduction 151:R43–54. https://doi.org/10.1530/REP-15-0310

    CAS  Article  PubMed  Google Scholar 

  135. Lehti MS, Sironen A (2017) Formation and function of sperm tail structures in association with sperm motility defects. Biol Reprod 97:522–536. https://doi.org/10.1093/biolre/iox096

    Article  PubMed  Google Scholar 

  136. Lerer-Goldshtein T et al (2010) TMF/ARA160: a key regulator of sperm development. Dev Biol 348:12–21. https://doi.org/10.1016/j.ydbio.2010.07.033

    CAS  Article  PubMed  Google Scholar 

  137. Leyton L, Robinson A, Saling P (1989) Relationship between the M42 antigen of mouse sperm and the acrosome reaction induced by ZP3. Dev Biol 132:174–178. https://doi.org/10.1016/0012-1606(89)90215-7

    CAS  Article  PubMed  Google Scholar 

  138. Lhuillier P et al (2009) Absence of annulus in human asthenozoospermia: case report. Hum Reprod 24:1296–1303. https://doi.org/10.1093/humrep/dep020

    CAS  Article  PubMed  Google Scholar 

  139. Lim SL et al (2015) HENMT1 and piRNA stability are required for adult male germ cell transposon repression and to define the spermatogenic program in the mouse. PLoS Genet 11:e1005620. https://doi.org/10.1371/journal.pgen.1005620

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Lim S et al (2019) CRISP2 is a regulator of multiple aspects of sperm function and male fertility. Endocrinology 160:915–924. https://doi.org/10.1210/en.2018-01076

    CAS  Article  PubMed  Google Scholar 

  141. Lindeboom RG, Supek F, Lehner B (2016) The rules and impact of nonsense-mediated mRNA decay in human cancers. Nat Genet 48:1112–1118. https://doi.org/10.1038/ng.3664

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. Lindemann CB, Lesich KA (2010) Flagellar and ciliary beating: the proven and the possible. J Cell Sci 123:519–528. https://doi.org/10.1242/jcs.051326

    CAS  Article  PubMed  Google Scholar 

  143. Lishko P, Clapham DE, Navarro B, Kirichok Y (2013) Sperm patch-clamp. Methods Enzymol 525:59–83. https://doi.org/10.1016/B978-0-12-397944-5.00004-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  144. Lucas LA, Eleftheriou BE (1980) Circadian variation in concentrations of testosterone in the plasma of male mice: a difference between BALB/cBy and C57BL/6By inbred strains. J Endocrinol 87:37–46

    CAS  PubMed  Google Scholar 

  145. MacArthur DG et al (2014) Guidelines for investigating causality of sequence variants in human disease. Nature 508:469–476. https://doi.org/10.1038/nature13127

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  146. Macmillan EW (1953) Higher epididymal obstructions in male infertility; etiology and treatment. Fertil Steril 4:101–127

    CAS  PubMed  Google Scholar 

  147. Magi A et al (2014) H3M2: detection of runs of homozygosity from whole-exome sequencing data. Bioinformatics 30:2852–2859. https://doi.org/10.1093/bioinformatics/btu401

    CAS  Article  PubMed  Google Scholar 

  148. Mann JR (1988) Full term development of mouse eggs fertilized by a spermatozoon microinjected under the zona pellucida. Biol Reprod 38:1077–1083

    CAS  PubMed  Google Scholar 

  149. Marcon E, Moens P (2003) MLH1p and MLH3p localize to precociously induced chiasmata of okadaic-acid-treated mouse spermatocytes. Genetics 165:2283–2287

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Mathieson I, McVean G (2012) Differential confounding of rare and common variants in spatially structured populations. Nat Genet 44:243–246. https://doi.org/10.1038/ng.1074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. McDevitt MA, Glidewell-Kenney C, Weiss J, Chambon P, Jameson JL, Levine JE (2007) Estrogen response element-independent estrogen receptor (ER)-alpha signaling does not rescue sexual behavior but restores normal testosterone secretion in male ERalpha knockout mice. Endocrinology 148:5288–5294. https://doi.org/10.1210/en.2007-0673

    CAS  Article  PubMed  Google Scholar 

  152. McLachlan RI, O'Bryan MK (2010) Clinical Review#: State of the art for genetic testing of infertile men. J Clin Endocrinol Metab 95:1013–1024. https://doi.org/10.1210/jc.2009-1925

    CAS  Article  PubMed  Google Scholar 

  153. McLachlan RI, Rajpert-De Meyts E, Hoei-Hansen CE, de Krester DM, Skakkebaek NE (2007) Histological evaluation of the human testis–approaches to optimizing the clinical value of the assessment: mini review. Hum Reprod 22:2–16

    CAS  PubMed  Google Scholar 

  154. McNeilly JR, Saunders PT, Taggart M, Cranfield M, Cooke HJ, McNeilly AS (2000) Loss of oocytes in Dazl knockout mice results in maintained ovarian steroidogenic function but altered gonadotropin secretion in adult animals. Endocrinology 141:4284–4294. https://doi.org/10.1210/endo.141.11.7764

    CAS  Article  PubMed  Google Scholar 

  155. Meng J, Greenlee AR, Taub CJ, Braun RE (2011) Sertoli cell-specific deletion of the androgen receptor compromises testicular immune privilege in mice. Biol Reprod 85(2):254–260. https://doi.org/10.1095/biolreprod.110.090621

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. Mohr SE, Hu Y, Ewen-Campen B, Housden BE, Viswanatha R, Perrimon N (2016) CRISPR guide RNA design for research applications. FEBS J 283:3232–3238. https://doi.org/10.1111/febs.13777

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. Morais da Silva S, Hacker A, Harley V, Goodfellow P, Swain A, Lovell-Badge R (1996) Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat Genet 14:62–68. https://doi.org/10.1038/ng0996-62

    CAS  Article  PubMed  Google Scholar 

  158. Morita Y (1971) Histological investigation of testis in infertile man. I. Some clinical problems on testicular biopsy. Nagoya J Med Sci 34:101–112

    CAS  PubMed  Google Scholar 

  159. Morrow CM, Hostetler CE, Griswold MD, Hofmann MC, Murphy KM, Cooke PS, Hess RA (2007) ETV5 is required for continuous spermatogenesis in adult mice and may mediate blood testes barrier function and testicular immune privilege. Ann N Y Acad Sci 1120:144–151. https://doi.org/10.1196/annals.1411.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  160. Morton BE, Lardy HA (1967) Cellular oxidative phosphorylation. I. Measurement in intact spermatozoa and other cells. Biochemistry 6:43–49

    CAS  PubMed  Google Scholar 

  161. Morton BE, Sagadraca R, Fraser C (1978) Sperm motility within the mammalian epididymis: species variation and correlation with free calcium levels in epididymal plasma. Fertil Steril 29:695–698. https://doi.org/10.1016/s0015-0282(16)43348-0

    CAS  Article  PubMed  Google Scholar 

  162. Mruk DD, Cheng CY (2015) The mammalian blood-testis barrier: its biology and regulation. Endocr Rev 36:564–591. https://doi.org/10.1210/er.2014-1101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  163. Mundy AJ, Ryder TA, Edmonds DK (1995) Asthenozoospermia and the human sperm mid-piece. Hum Reprod 10:116–119

    CAS  PubMed  Google Scholar 

  164. Musicki B, Zhang Y, Chen H, Brown TR, Zirkin BR, Burnett AL (2015) Mechanism of testosterone deficiency in the transgenic sickle cell mouse. PLoS ONE 10:e0128694. https://doi.org/10.1371/journal.pone.0128694

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  165. Nagano T (1963) Fine Structural Changes in the Flagellum of the Spermatid in Experimental Cryptorchidism of the Rat. J Cell Biol 18:337–344

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Nagy A, Gertsenstein M, Vintersten K, Behringer R (2006) Oviduct transfer. CSH Protoc. https://doi.org/10.1101/pdb.prot4379

    Article  PubMed  Google Scholar 

  167. Narasimhan V, Danecek P, Scally A, Xue Y, Tyler-Smith C, Durbin R (2016) BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32:1749–1751. https://doi.org/10.1093/bioinformatics/btw044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  168. Navarro B, Kirichok Y, Clapham DE (2007) KSper, a pH-sensitive K+ current that controls sperm membrane potential. Proc Natl Acad Sci USA 104:7688–7692. https://doi.org/10.1073/pnas.0702018104

    CAS  Article  PubMed  Google Scholar 

  169. Neesen J et al (2001) Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. Hum Mol Genet 10:1117–1128

    CAS  PubMed  Google Scholar 

  170. Neill JM, Olds-Clarke P (1987) A computer-assisted assay for mouse sperm hyperactivation demonstrates that bicarbonate but not bovine serum albumin is required. Gamete Res 18:121–140. https://doi.org/10.1002/mrd.1120180204

    CAS  Article  PubMed  Google Scholar 

  171. Nixon B et al (2019) Proteomic profiling of mouse epididymosomes reveals their contributions to post-testicular sperm maturation. Mol Cell Proteomics 18:S91–S108. https://doi.org/10.1074/mcp.RA118.000946

    CAS  Article  PubMed  Google Scholar 

  172. Nixon B, MacIntyre DA, Mitchell LA, Gibbs GM, O'Bryan M, Aitken RJ (2006) The identification of mouse sperm-surface-associated proteins and characterization of their ability to act as decapacitation factors. Biol Reprod 74:275–287. https://doi.org/10.1095/biolreprod.105.044644

    CAS  Article  PubMed  Google Scholar 

  173. Noda T, Fujihara Y, Matsumura T, Oura S, Kobayashi S, Ikawa M (2019) Seminal vesicle secretory protein 7, PATE4, is not required for sperm function but for copulatory plug formation to ensure fecunditydagger. Biol Reprod 100:1035–1045. https://doi.org/10.1093/biolre/ioy247

    Article  PubMed  Google Scholar 

  174. Nozawa K, Satouh Y, Fujimoto T, Oji A, Ikawa M (2018) Sperm-borne phospholipase C zeta-1 ensures monospermic fertilization in mice. Sci Rep 8:1315. https://doi.org/10.1038/s41598-018-19497-6

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  175. O'Bryan MK et al (2013) RBM5 is a male germ cell splicing factor and is required for spermatid differentiation and male fertility. PLoS Genet 9:e1003628. https://doi.org/10.1371/journal.pgen.1003628

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  176. O'Donnell L, Nicholls PK, O'Bryan MK, McLachlan RI, Stanton PG (2011) Spermiation: the process of sperm release. Spermatogenesis 1:14–35. https://doi.org/10.4161/spmg.1.1.14525

    Article  PubMed  PubMed Central  Google Scholar 

  177. O'Hara L, Smith LB (2015) Androgen receptor roles in spermatogenesis and infertility. Best Pract Res Clin Endocrinol Metab 29:595–605. https://doi.org/10.1016/j.beem.2015.04.006

    CAS  Article  PubMed  Google Scholar 

  178. O'Hara L, Welsh M, Saunders PT, Smith LB (2011) Androgen receptor expression in the caput epididymal epithelium is essential for development of the initial segment and epididymal spermatozoa transit. Endocrinology 152:718–729. https://doi.org/10.1210/en.2010-0928

    CAS  Article  PubMed  Google Scholar 

  179. O'Shaughnessy PJ (2014) Hormonal control of germ cell development and spermatogenesis. Semin Cell Dev Biol 29:55–65. https://doi.org/10.1016/j.semcdb.2014.02.010

    CAS  Article  PubMed  Google Scholar 

  180. O'Shaughnessy PJ, Fleming LM, Jackson G, Hochgeschwender U, Reed P, Baker PJ (2003) Adrenocorticotropic hormone directly stimulates testosterone production by the fetal and neonatal mouse testis. Endocrinology 144:3279–3284. https://doi.org/10.1210/en.2003-0277

    CAS  Article  PubMed  Google Scholar 

  181. Oatley JM, Brinster RL (2012) The germline stem cell niche unit in mammalian testes. Physiol Rev 92:577–595. https://doi.org/10.1152/physrev.00025.2011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  182. Olds-Clarke P (1989) Sperm from tw32/+ mice: capacitation is normal, but hyperactivation is premature and nonhyperactivated sperm are slow. Dev Biol 131:475–482

    CAS  PubMed  Google Scholar 

  183. Oliveira H, Spano M, Santos C, Pereira Mde L (2009) Adverse effects of cadmium exposure on mouse sperm. Reprod Toxicol 28:550–555. https://doi.org/10.1016/j.reprotox.2009.08.001

    CAS  Article  PubMed  Google Scholar 

  184. Oud MS et al (2019) A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod 34(5):932–941. https://doi.org/10.1093/humrep/dez022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  185. Park SK et al (2012) Enhancement of mouse sperm motility by trophinin-binding peptide. Reprod Biol Endocrinol 10:101. https://doi.org/10.1186/1477-7827-10-101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  186. Park YJ, Battistone MA, Kim B, Breton S (2017) Relative contribution of clear cells and principal cells to luminal pH in the mouse epididymis. Biol Reprod 96:366–375. https://doi.org/10.1095/biolreprod.116.144857

    Article  PubMed  PubMed Central  Google Scholar 

  187. Peters AH, Plug AW, van Vugt MJ, de Boer P (1997) A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res 5:66–68

    CAS  PubMed  Google Scholar 

  188. Pierre V et al (2012) Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development 139:2955–2965. https://doi.org/10.1242/dev.077982

    CAS  Article  PubMed  Google Scholar 

  189. Pitetti JL et al (2013) An essential role for insulin and IGF1 receptors in regulating sertoli cell proliferation, testis size, and FSH action in mice. Mol Endocrinol 27:814–827. https://doi.org/10.1210/me.2012-1258

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  190. Pleuger C, Lehti MS, Dunleavy JEM, Fietz D, O’Bryan MK (2020) Haploid male germ cells—the Grand Central Station of protein transport. Hum Reprod

  191. Qi H et al (2007) All four CatSper ion channel proteins are required for male fertility and sperm cell hyperactivated motility. Proc Natl Acad Sci USA 104:1219–1223. https://doi.org/10.1073/pnas.0610286104

    CAS  Article  PubMed  Google Scholar 

  192. Ramos-Ibeas P, Pericuesta E, Fernandez-Gonzalez R, Ramirez MA, Gutierrez-Adan A (2013) Most regions of mouse epididymis are able to phagocytose immature germ cells. Reproduction 146:481–489. https://doi.org/10.1530/REP-13-0145

    CAS  Article  PubMed  Google Scholar 

  193. Rana K, Davey RA, Zajac JD (2014) Human androgen deficiency: insights gained from androgen receptor knockout mouse models. Asian J Androl 16:169–177. https://doi.org/10.4103/1008-682X.122590

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  194. Rebourcet D et al (2014) Sertoli cells maintain Leydig cell number and peritubular myoid cell activity in the adult mouse testis. PLoS ONE 9:e105687. https://doi.org/10.1371/journal.pone.0105687

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  195. Rebourcet D et al (2016) Sertoli cells modulate testicular vascular network development, structure, and function to influence circulating testosterone concentrations in adult male mice. Endocrinology 157:2479–2488. https://doi.org/10.1210/en.2016-1156

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  196. Rebourcet D et al (2019) Relationship of transcriptional markers to Leydig cell number in the mouse testis. PLoS ONE 14:e0219524. https://doi.org/10.1371/journal.pone.0219524

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  197. Reddi PP, Flickinger CJ, Herr JC (1999) Round spermatid-specific transcription of the mouse SP-10 gene is mediated by a 294-base pair proximal promoter. Biol Reprod 61:1256–1266. https://doi.org/10.1095/biolreprod61.5.1256

    CAS  Article  PubMed  Google Scholar 

  198. Reid AT et al (2012) Dynamin regulates specific membrane fusion events necessary for acrosomal exocytosis in mouse spermatozoa. J Biol Chem 287:37659–37672. https://doi.org/10.1074/jbc.M112.392803

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  199. Reilly JN et al (2016) Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep 6:31794. https://doi.org/10.1038/srep31794

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  200. Ren D et al (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413:603–609. https://doi.org/10.1038/35098027

    CAS  Article  PubMed  Google Scholar 

  201. Ren YA et al (2019) S100a4-Cre-mediated deletion of Patched1 causes hypogonadotropic hypogonadism: role of pituitary hematopoietic cells in endocrine regulation. JCI Insight 2019:5. https://doi.org/10.1172/jci.insight.126325

    Article  Google Scholar 

  202. Rennhack A et al (2018) A novel cross-species inhibitor to study the function of CatSper Ca(2+) channels in sperm. Br J Pharmacol 175:3144–3161. https://doi.org/10.1111/bph.14355

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  203. Richards S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  204. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517. https://doi.org/10.1126/science.273.5281.1516

    CAS  Article  PubMed  Google Scholar 

  205. Robson JM (1951) Local action of steroids on secondary sex organs of male rats. J Physiol 113:537–541

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Romrell LJ, Bellve AR, Fawcett DW (1976) Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev Biol 49:119–131

    CAS  PubMed  Google Scholar 

  207. Rosenthal N, Brown S (2007) The mouse ascending: perspectives for human-disease models. Nat Cell Biol 9:993–999. https://doi.org/10.1038/ncb437

    CAS  Article  PubMed  Google Scholar 

  208. Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (1990) Mammalian spermatogenesis. In: Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED (eds) Histological and histopathological evaluation of the testis. Cache River Press, Clearwater

  209. Sakkas D, Leppens-Luisier G, Lucas H, Chardonnens D, Campana A, Franken DR, Urner F (2003) Localization of tyrosine phosphorylated proteins in human sperm and relation to capacitation and zona pellucida binding. Biol Reprod 68:1463–1469. https://doi.org/10.1095/biolreprod.102.011023

    CAS  Article  PubMed  Google Scholar 

  210. Santi CM, Martinez-Lopez P, de la Vega-Beltran JL, Butler A, Alisio A, Darszon A, Salkoff L (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 584:1041–1046. https://doi.org/10.1016/j.febslet.2010.02.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  211. Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL, Strauss IJ (2002) Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol 22:6298–6305. https://doi.org/10.1128/mcb.22.17.6298-6305.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  212. Sati L, Cayli S, Delpiano E, Sakkas D, Huszar G (2014) The pattern of tyrosine phosphorylation in human sperm in response to binding to zona pellucida or hyaluronic acid. Reprod Sci 21:573–581. https://doi.org/10.1177/1933719113504467

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  213. Schatten G, Simerly C, Schatten H (1991) Maternal inheritance of centrosomes in mammals? Studies on parthenogenesis and polyspermy in mice. Proc Natl Acad Sci USA 88:6785–6789. https://doi.org/10.1073/pnas.88.15.6785

    CAS  Article  PubMed  Google Scholar 

  214. Schimenti JC, Handel MA (2018) Unpackaging the genetics of mammalian fertility: strategies to identify the "reproductive genome". Biol Reprod 99:1119–1128. https://doi.org/10.1093/biolre/ioy133

    Article  PubMed  Google Scholar 

  215. Serre V, Robaire B (1999) Distribution of immune cells in the epididymis of the aging Brown Norway rat is segment-specific and related to the luminal content. Biol Reprod 61:705–714

    CAS  PubMed  Google Scholar 

  216. Shang Y et al (2017) Essential role for SUN5 in anchoring sperm head to the tail. Elife 2017:6. https://doi.org/10.7554/eLife.28199

    Article  Google Scholar 

  217. Shang X et al (2018) Serine protease PRSS55 is crucial for male mouse fertility via affecting sperm migration and sperm-egg binding. Cell Mol Life Sci 75:4371–4384. https://doi.org/10.1007/s00018-018-2878-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  218. Sharpe RM (2000) Lifestyle and environmental contribution to male infertility. Br Med Bull 56:630–642. https://doi.org/10.1258/0007142001903436

    CAS  Article  PubMed  Google Scholar 

  219. Sharpe RM, McKinnell C, Kivlin C, Fisher JS (2003) Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125:769–784

    CAS  PubMed  Google Scholar 

  220. Shen Y et al (2019) Loss-of-function mutations in QRICH2 cause male infertility with multiple morphological abnormalities of the sperm flagella. Nat Commun 10:433. https://doi.org/10.1038/s41467-018-08182-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  221. Shur BD, Hall NG (1982) A role for mouse sperm surface galactosyltransferase in sperm binding to the egg zona pellucida. J Cell Biol 95:574–579

    CAS  PubMed  Google Scholar 

  222. Singh P, Schimenti JC (2015) The genetics of human infertility by functional interrogation of SNPs in mice. Proc Natl Acad Sci USA 112:10431–10436. https://doi.org/10.1073/pnas.1506974112

    CAS  Article  PubMed  Google Scholar 

  223. Sinha D et al (2018) Cep55 overexpression causes male-specific sterility in mice by suppressing Foxo1 nuclear retention through sustained activation of PI3K/Akt signalling. FASEB J 32:4984–4999. https://doi.org/10.1096/fj.201701096RR

    CAS  Article  PubMed  Google Scholar 

  224. Skinner BM et al (2019) A high-throughput method for unbiased quantitation and categorization of nuclear morphologydagger. Biol Reprod 100:1250–1260. https://doi.org/10.1093/biolre/ioz013

    Article  PubMed  PubMed Central  Google Scholar 

  225. Smith TB, Baker MA, Connaughton HS, Habenicht U, Aitken RJ (2013) Functional deletion of Txndc2 and Txndc3 increases the susceptibility of spermatozoa to age-related oxidative stress. Free Radic Biol Med 65:872–881. https://doi.org/10.1016/j.freeradbiomed.2013.05.021

    CAS  Article  PubMed  Google Scholar 

  226. Smith LB, Walker WH (2014) The regulation of spermatogenesis by androgens. Semin Cell Dev Biol 30:2–13. https://doi.org/10.1016/j.semcdb.2014.02.012

    CAS  Article  PubMed  Google Scholar 

  227. Soumillon M et al (2013) Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 3:2179–2190. https://doi.org/10.1016/j.celrep.2013.05.031

    CAS  Article  PubMed  Google Scholar 

  228. Spiller CM, Burnet G, Bowles J (2017) Mouse Fetal Germ Cell Isolation And Culture Techniques. Methods Mol Biol 1463:173–183. https://doi.org/10.1007/978-1-4939-4017-2_13

    CAS  Article  PubMed  Google Scholar 

  229. Stauss CR, Votta TJ, Suarez SS (1995) Sperm motility hyperactivation facilitates penetration of the hamster zona pellucida. Biol Reprod 53:1280–1285. https://doi.org/10.1095/biolreprod53.6.1280

    CAS  Article  PubMed  Google Scholar 

  230. Steiner MM, Boggs JD (1965) Absence of pituitary gland, hypothyroidism, hypoadrenalism and hypogonadism in a 17-year-old dwarf. J Clin Endocrinol Metab 25:1591–1598. https://doi.org/10.1210/jcem-25-12-1591

    CAS  Article  PubMed  Google Scholar 

  231. Storey BT (2008) Mammalian sperm metabolism: oxygen and sugar, friend and foe. Int J Dev Biol 52:427–437. https://doi.org/10.1387/ijdb.072522bs

    CAS  Article  PubMed  Google Scholar 

  232. Suarez SS (2008) Control of hyperactivation in sperm. Hum Reprod Update 14:647–657. https://doi.org/10.1093/humupd/dmn029

    CAS  Article  PubMed  Google Scholar 

  233. Suarez SS, Hinton BT, Oliphant G (1981) Binding of a marker for immunoglobulins to the surface of rabbit testicular, epididymal, and ejaculated spermatozoa. Biol Reprod 25:1091–1097

    CAS  PubMed  Google Scholar 

  234. Suzuki M, Abe K, Yoshinaga K, Obinata M, Furusawa M, Abe K (1996) Specific arrest of spermatogenesis caused by apoptotic cell death in transgenic mice. Genes Cells 1:1077–1086

    CAS  PubMed  Google Scholar 

  235. Suzuki H, Ahn HW, Chu T, Bowden W, Gassei K, Orwig K, Rajkovic A (2012) SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol 361:301–312. https://doi.org/10.1016/j.ydbio.2011.10.027

    CAS  Article  PubMed  Google Scholar 

  236. Taft R (2017) In vitro fertilization in mice. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot094508

    Article  PubMed  Google Scholar 

  237. Tang S et al (2017) Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet 100:854–864. https://doi.org/10.1016/j.ajhg.2017.04.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  238. Tao J, Critser ES, Critser JK (1993) Evaluation of mouse sperm acrosomal status and viability by flow cytometry. Mol Reprod Dev 36:183–194. https://doi.org/10.1002/mrd.1080360209

    CAS  Article  PubMed  Google Scholar 

  239. Tateno H, Krapf D, Hino T, Sanchez-Cardenas C, Darszon A, Yanagimachi R, Visconti PE (2013) Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. Proc Natl Acad Sci USA 110:18543–18548. https://doi.org/10.1073/pnas.1317113110

    CAS  Article  PubMed  Google Scholar 

  240. Tremblay JJ (2015) Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids 103:3–10. https://doi.org/10.1016/j.steroids.2015.08.001

    CAS  Article  PubMed  Google Scholar 

  241. Turner JM, Mahadevaiah SK, Benavente R, Offenberg HH, Heyting C, Burgoyne PS (2000) Analysis of male meiotic "sex body" proteins during XY female meiosis provides new insights into their functions. Chromosoma 109:426–432. https://doi.org/10.1007/s004120000097

    CAS  Article  PubMed  Google Scholar 

  242. van der Bijl N et al (2019) Mutations in the stromal antigen 3 (STAG3) gene cause male infertility due to meiotic arrest. Hum Reprod 34:2112–2119. https://doi.org/10.1093/humrep/dez204

    CAS  Article  PubMed  Google Scholar 

  243. Viggiano JM, Herrero MB, Martinez SP, De Gimeno MF (1996) Analysis of the effect of nitric oxide synthase inhibition on mouse sperm employing a modified staining method for assessment of the acrosome reaction. J Androl 17:692–698

    CAS  PubMed  Google Scholar 

  244. Virtanen I, Badley RA, Paasivuo R, Lehto VP (1984) Distinct cytoskeletal domains revealed in sperm cells. J Cell Biol 99:1083–1091. https://doi.org/10.1083/jcb.99.3.1083

    CAS  Article  PubMed  Google Scholar 

  245. Visconti PE et al (1995b) Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121:1139–1150

    CAS  PubMed  Google Scholar 

  246. Visconti PE et al (1999) Cholesterol efflux-mediated signal transduction in mammalian sperm. beta-cyclodextrins initiate transmembrane signaling leading to an increase in protein tyrosine phosphorylation and capacitation. J Biol Chem 274:3235–3242

    CAS  PubMed  Google Scholar 

  247. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS (1995a) Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121:1129–1137

    CAS  PubMed  Google Scholar 

  248. Voisin A et al (2018) Comprehensive overview of murine epididymal mononuclear phagocytes and lymphocytes: unexpected populations arise. J Reprod Immunol 126:11–17. https://doi.org/10.1016/j.jri.2018.01.003

    CAS  Article  PubMed  Google Scholar 

  249. Walton KL, Kelly EK, Johnson KE, Robertson DM, Stanton PG, Harrison CA (2016) A novel, more efficient approach to generate bioactive inhibins. Endocrinology 157:2799–2809. https://doi.org/10.1210/en.2015-1963

    CAS  Article  PubMed  Google Scholar 

  250. Wang XN et al (2013) The Wilms tumor gene, Wt1, is critical for mouse spermatogenesis via regulation of sertoli cell polarity and is associated with non-obstructive azoospermia in humans. PLoS Genet 9:e1003645. https://doi.org/10.1371/journal.pgen.1003645

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  251. Ware SM, Aygun MG, Hildebrandt F (2011) Spectrum of clinical diseases caused by disorders of primary cilia. Proc Am Thorac Soc 8:444–450. https://doi.org/10.1513/pats.201103-025SD

    Article  PubMed  PubMed Central  Google Scholar 

  252. Watanabe N (2005) Decreased number of sperms and Sertoli cells in mature rats exposed to diesel exhaust as fetuses. Toxicol Lett 155:51–58. https://doi.org/10.1016/j.toxlet.2004.08.010

    CAS  Article  PubMed  Google Scholar 

  253. Weidemann M et al (2016) CFAP157 is a murine downstream effector of FOXJ1 that is specifically required for flagellum morphogenesis and sperm motility. Development 143:4736–4748. https://doi.org/10.1242/dev.139626

    CAS  Article  PubMed  Google Scholar 

  254. Welsh M et al (2010) Deletion of androgen receptor in the smooth muscle of the seminal vesicles impairs secretory function and alters its responsiveness to exogenous testosterone and estradiol. Endocrinology 151:3374–3385. https://doi.org/10.1210/en.2009-1339

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  255. Whiffin N et al (2017) Using high-resolution variant frequencies to empower clinical genome interpretation. Genet Med 19:1151–1158. https://doi.org/10.1038/gim.2017.26

    Article  PubMed  PubMed Central  Google Scholar 

  256. Whitfield M et al (2019) Mutations in DNAH17, encoding a sperm-specific axonemal outer dynein arm heavy chain, cause isolated male infertility due to asthenozoospermia. Am J Hum Genet 105:198–212. https://doi.org/10.1016/j.ajhg.2019.04.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  257. Wijayarathna R et al (2018) Comparative analysis of activins A and B in the adult mouse epididymis and vas deferens. Reproduction 155:15–23. https://doi.org/10.1530/REP-17-0485

    CAS  Article  PubMed  Google Scholar 

  258. Wilfert AB, Chao KR, Kaushal M, Jain S, Zollner S, Adams DR, Conrad DF (2016) Genome-wide significance testing of variation from single case exomes. Nat Genet 48:1455–1461. https://doi.org/10.1038/ng.3697

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  259. Wilkie AO (1994) The molecular basis of genetic dominance. J Med Genet 31:89–98. https://doi.org/10.1136/jmg.31.2.89

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  260. Wong EW, Cheng CY (2011) Impacts of environmental toxicants on male reproductive dysfunction. Trends Pharmacol Sci 32:290–299. https://doi.org/10.1016/j.tips.2011.01.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  261. Wright CF, FitzPatrick DR, Firth HV (2018) Paediatric genomics: diagnosing rare disease in children. Nat Rev Genet 19:325. https://doi.org/10.1038/nrg.2018.12

    CAS  Article  PubMed  Google Scholar 

  262. Yanagimachi R (1970) The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fertil 23:193–196

    CAS  PubMed  Google Scholar 

  263. Yanagimachi R, Lopata A, Odom CB, Bronson RA, Mahi CA, Nicolson GL (1979) Retention of biologic characteristics of zona pellucida in highly concentrated salt solution: the use of salt-stored eggs for assessing the fertilizing capacity of spermatozoa. Fertil Steril 31:562–574. https://doi.org/10.1016/s0015-0282(16)44004-5

    CAS  Article  PubMed  Google Scholar 

  264. Yang H, Wang H, Jaenisch R (2014) Generating genetically modified mice using CRISPR/Cas-mediated genome engineering. Nat Protoc 9:1956–1968. https://doi.org/10.1038/nprot.2014.134

    CAS  Article  PubMed  Google Scholar 

  265. Yassine S et al (2015) Dpy19l2-deficient globozoospermic sperm display altered genome packaging and DNA damage that compromises the initiation of embryo development. Mol Hum Reprod 21:169–185. https://doi.org/10.1093/molehr/gau099

    CAS  Article  PubMed  Google Scholar 

  266. Ye X, Skinner MK, Kennedy G, Chun J (2008) Age-dependent loss of sperm production in mice via impaired lysophosphatidic acid signaling. Biol Reprod 79:328–336. https://doi.org/10.1095/biolreprod.108.068783

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  267. Yeung CH, Breton S, Setiawan I, Xu Y, Lang F, Cooper TG (2004) Increased luminal pH in the epididymis of infertile c-ros knockout mice and the expression of sodium-hydrogen exchangers and vacuolar proton pump H+-ATPase. Mol Reprod Dev 68:159–168. https://doi.org/10.1002/mrd.20067

    CAS  Article  PubMed  Google Scholar 

  268. Yokoyama C, Chigi Y, Baba T, Ohshitanai A, Harada Y, Takahashi F, Morohashi KI (2019) Three populations of adult Leydig cells in mouse testes revealed by a novel mouse HSD3B1-specific rat monoclonal antibody. Biochem Biophys Res Commun 511:916–920. https://doi.org/10.1016/j.bbrc.2019.02.100

    CAS  Article  PubMed  Google Scholar 

  269. Yoshida S, Sukeno M, Nakagawa T, Ohbo K, Nagamatsu G, Suda T, Nabeshima Y (2006) The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 133:1495–1505. https://doi.org/10.1242/dev.02316

    CAS  Article  PubMed  Google Scholar 

  270. Yoshinaga K, Nishikawa S, Ogawa M, Hayashi S, Kunisada T, Fujimoto T, Nishikawa S (1991) Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function. Development 113:689–699

    CAS  PubMed  Google Scholar 

  271. Yue M, Ogawa Y (2018) CRISPR/Cas9-mediated modulation of splicing efficiency reveals short splicing isoform of Xist RNA is sufficient to induce X-chromosome inactivation. Nucleic Acids Res 46:e26. https://doi.org/10.1093/nar/gkx1227

    CAS  Article  PubMed  Google Scholar 

  272. Zhao L, Svingen T, Ng ET, Koopman P (2015) Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development 142:1083–1088. https://doi.org/10.1242/dev.122184

    CAS  Article  PubMed  Google Scholar 

  273. Zhao J, Zhao J, Xu G, Wang Z, Gao J, Cui S, Liu J (2017) Deletion of Spata2 by CRISPR/Cas9n causes increased inhibin alpha expression and attenuated fertility in male mice. Biol Reprod 97:497–513. https://doi.org/10.1093/biolre/iox093

    Article  PubMed  Google Scholar 

  274. Zheng QS et al (2014) Wt1 deficiency causes undifferentiated spermatogonia accumulation and meiotic progression disruption in neonatal mice. Reproduction 147:45–52. https://doi.org/10.1530/REP-13-0299

    CAS  Article  PubMed  Google Scholar 

  275. Zhu F et al (2016) Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am J Hum Genet 99:1405. https://doi.org/10.1016/j.ajhg.2016.11.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  276. Zhu F et al (2018) Mutations in PMFBP1 cause acephalic spermatozoa syndrome. Am J Hum Genet 103:188–199. https://doi.org/10.1016/j.ajhg.2018.06.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This review was supported by a National Health and Medical Research (NHMRC) grant to MKOB and DFC (APP1120356). DFC was supported by the National Institutes of Health (R01HD078641).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brendan J. Houston.

Ethics declarations

Conflict of interest

The corresponding authors declares no conflicts of interest for all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Houston, B.J., Conrad, D.F. & O’Bryan, M.K. A framework for high-resolution phenotyping of candidate male infertility mutants: from human to mouse. Hum Genet 140, 155–182 (2021). https://doi.org/10.1007/s00439-020-02159-x

Download citation