The current and future impact of genome-wide sequencing on fetal precision medicine

Abstract

Next-generation sequencing and other genomic technologies are transforming prenatal and reproductive screening and testing for fetal genetic disorders at an unprecedented pace. Original approaches of screening and testing for fetal genetic and genomic disorders were focused on a few more prevalent conditions that were easily diagnosable with pre-genomic era diagnostic tools. First, chromosomal microarray analysis and then next-generation sequencing brought technology capable of more detailed genomic evaluation to prenatal genetic screening and diagnosis. This has facilitated parallel introduction of a variety of new tests on maternal blood samples, including expanded carrier screening and cell-free DNA-based non-invasive screening for fetal aneuploidy, selected copy number variants, and single-gene disorders. Genomic tests on fetal DNA samples, obtained primarily through amniocentesis or chorionic villus sampling, include chromosomal microarray analysis and gene panel and exome sequencing. All these form the diagnostic pillar of the emerging field of fetal precision medicine, but their implementation is associated with ethical, counseling and healthcare resource utilization challenges. We discuss where in the reproductive and prenatal care continuum these exciting new technologies are integrated, along with associated challenges. We propose areas of priority for research to gain the data in support of their responsible implementation into clinical reproductive and prenatal care.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abou Tayoun AN, Spinner NB, Rehm HL, Green RC, Bianchi DW (2018) Prenatal DNA sequencing: clinical, counseling, and diagnostic laboratory considerations. Prenat Diagn 38:26–32. https://doi.org/10.1002/pd.5038

    Article  PubMed  Google Scholar 

  2. Akolekar R, Beta J, Picciarelli G, Ogilvie C, D’Antonio F (2015) Procedure-related risk of miscarriage following amniocentesis and chorionic villus sampling: a systematic review and meta-analysis. Ultrasound Obstet Gynecol 45:16–26. https://doi.org/10.1002/uog.14636

    CAS  Article  PubMed  Google Scholar 

  3. American College of Medical Genetics and Genomics (ACMG) Board of Directors (2015) ACMG policy statement: updated recommendations regarding analysis and reporting of secondary findings in clinical genome-scale sequencing. Genet Med 17:68–69. https://doi.org/10.1038/gim.2014.151

    Article  Google Scholar 

  4. American College of Obstetrics and Gynecology (ACOG) (2019) Practice Advisory Cell-free DNA to Screen for Single-Gene Disorders. https://www.acog.org/Clinical-Guidance-and-Publications/Practice-Advisories/Cell-free-DNA-to-Screen-for-Single-Gene-Disorders. Accessed 21 Feb 2019

  5. American College of Obstetrics and Gynecology (ACOG) Committee on Genetics (2016a) Practice Bulletin No. 162 Summary: prenatal diagnostic testing for genetic disorders. Obstet Gynecol 127:976–978. https://doi.org/10.1097/aog.0000000000001438

    Article  Google Scholar 

  6. American College of Obstetrics and Gynecology (ACOG) Committee on Genetics (2016b) Practice Bulletin No. 163 Summary: screening for fetal aneuploidy. Obstet Gynecol 127:979–981. https://doi.org/10.1097/aog.0000000000001439

    Article  Google Scholar 

  7. Antonarakis SE (2019) Carrier screening for recessive disorders. Nat Rev Genet 20:549–561. https://doi.org/10.1038/s41576-019-0134-2

    CAS  Article  PubMed  Google Scholar 

  8. Baird PA, Anderson TW, Newcombe HB, Lowry RB (1988) Genetic disorders in children and young adults: a population study. Am J Hum Genet 42:677–693

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Beaudet AL (2016) Using fetal cells for prenatal diagnosis: History and recent progress. Am J Med Genet C 172:123–127. https://doi.org/10.1002/ajmg.c.31487

    CAS  Article  Google Scholar 

  10. Bell CJ et al (2011) Carrier testing for severe childhood recessive diseases by next-generation sequencing. Sci Transl Med 3:65ra64. https://doi.org/10.1126/scitranslmed.3001756

    CAS  Article  Google Scholar 

  11. Best S, Wou K, Vora N, Van den Veyver IB, Wapner R, Chitty LS (2018) Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn 38:10–19. https://doi.org/10.1002/pd.5102

    CAS  Article  PubMed  Google Scholar 

  12. Bianchi DW, Chiu RWK (2018) Sequencing of circulating cell-free DNA during pregnancy. N Engl J Med 379:464–473. https://doi.org/10.1056/NEJMra1705345

    CAS  Article  PubMed  Google Scholar 

  13. Biesecker LG, Green RC (2014) Diagnostic clinical genome and exome sequencing. N Engl J Med 371:1170. https://doi.org/10.1056/NEJMc1408914

    Article  PubMed  Google Scholar 

  14. Chitty LS, David AL, Gottschalk I, Oepkes D, Westgren M, Götherström C, Consortium O (2016) EP21.04. BOOSTB4: clinical study to determine safety and efficacy of pre- and/or postnatal stem cell transplantation for treatment of osteogenesis imperfecta. Ultrasound Obstet Gynecol 48(S1):356. https://doi.org/10.1002/uog.17084

    Article  Google Scholar 

  15. Chiu RW et al (2008) Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proc Natl Acad Sci USA 105:20458–20463. https://doi.org/10.1073/pnas.0810641105

    Article  PubMed  Google Scholar 

  16. Chokoshvili D, Borry P, Vears DF (2017) A systematic analysis of online marketing materials used by providers of expanded carrier screening. Genet Med. https://doi.org/10.1038/gim.2017.222

    Article  PubMed  Google Scholar 

  17. Clark MM, Stark Z, Farnaes L, Tan TY, White SM, Dimmock D, Kingsmore SF (2018) Meta-analysis of the diagnostic and clinical utility of genome and exome sequencing and chromosomal microarray in children with suspected genetic diseases. NPJ Genom Med 3:16. https://doi.org/10.1038/s41525-018-0053-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Dhillon RK, Hillman SC, Morris RK, McMullan D, Williams D, Coomarasamy A, Kilby MD (2014) Additional information from chromosomal microarray analysis (CMA) over conventional karyotyping when diagnosing chromosomal abnormalities in miscarriage: a systematic review and meta-analysis. BJOG 121:11–21. https://doi.org/10.1111/1471-0528.12382

    CAS  Article  PubMed  Google Scholar 

  19. Drury S et al (2015) Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn 35:1010–1017. https://doi.org/10.1002/pd.4675

    CAS  Article  PubMed  Google Scholar 

  20. Drury S, Mason S, McKay F, Lo K, Boustred C, Jenkins L, Chitty LS (2016) Implementing non-invasive prenatal diagnosis (NIPD) in a national health service laboratory; From Dominant to Recessive Disorders. Adv Exp Med Biol 924:71–75. https://doi.org/10.1007/978-3-319-42044-8_14

    CAS  Article  PubMed  Google Scholar 

  21. Eddleman K et al (2003) Pregnancy loss rates after midtrimester amniocentesis: the faster trial. Am J Obstet Gynecol 189:S111

    Article  Google Scholar 

  22. Edwards JG et al (2015) Expanded carrier screening in reproductive medicine-points to consider: a joint statement of the American College of Medical Genetics and Genomics, American College of Obstetricians and Gynecologists, National Society of Genetic Counselors, Perinatal Quality Foundation, and Society for Maternal-Fetal Medicine. Obstet Gynecol 125:653–662. https://doi.org/10.1097/AOG.0000000000000666

    Article  PubMed  Google Scholar 

  23. Evans MI, Wapner RJ, Berkowitz RL (2016) Noninvasive prenatal screening or advanced diagnostic testing: caveat emptor. Am J Obstet Gynecol 215:298–305. https://doi.org/10.1016/j.ajog.2016.04.029

    Article  PubMed  Google Scholar 

  24. Fan HC, Blumenfeld YJ, Chitkara U, Hudgins L, Quake SR (2008) Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proc Natl Acad Sci USA 105:16266–16271. https://doi.org/10.1073/pnas.0808319105

    Article  PubMed  Google Scholar 

  25. Fan HC, Gu W, Wang J, Blumenfeld YJ, El-Sayed YY, Quake SR (2012) Non-invasive prenatal measurement of the fetal genome. Nature 487:320–324. https://doi.org/10.1038/nature11251

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Filges I, Friedman JM (2015) Exome sequencing for gene discovery in lethal fetal disorders—harnessing the value of extreme phenotypes. Prenat Diagn 35:1005–1009. https://doi.org/10.1002/pd.4464

    Article  PubMed  Google Scholar 

  27. Friedman JM (1981) Genetic disease in the offspring of older fathers. Obstet Gynecol 57:745–749

    CAS  PubMed  Google Scholar 

  28. Gil MM, Quezada MS, Revello R, Akolekar R, Nicolaides KH (2015) Analysis of cell-free DNA in maternal blood in screening for fetal aneuploidies: updated meta-analysis. Ultrasound Obstet Gynecol 45:249–266. https://doi.org/10.1002/uog.14791

    CAS  Article  PubMed  Google Scholar 

  29. Gray KJ, Wilkins-Haug LE, Herrig NJ, Vora NL (2019) Fetal phenotypes emerge as genetic technologies become robust. Prenat Diagn. https://doi.org/10.1002/pd.5532

    Article  PubMed  PubMed Central  Google Scholar 

  30. Green RC et al (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 15:565–574. https://doi.org/10.1038/gim.2013.73

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Gregg AR, Edwards JG (2018) Prenatal genetic carrier screening in the genomic age. Semin Perinatol 42:303–306. https://doi.org/10.1053/j.semperi.2018.07.019

    Article  PubMed  Google Scholar 

  32. Hayward J, Chitty LS (2018) Beyond screening for chromosomal abnormalities: advances in non-invasive diagnosis of single gene disorders and fetal exome sequencing. Semin Fetal Neonatal Med 23:94–101. https://doi.org/10.1016/j.siny.2017.12.002

    Article  PubMed  Google Scholar 

  33. Henneman L et al (2016) Responsible implementation of expanded carrier screening. Eur J Hum Genet 24:e1–e12. https://doi.org/10.1038/ejhg.2015.271

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hillman SC et al (2013) Use of prenatal chromosomal microarray: prospective cohort study and systematic review and meta-analysis. Ultrasound Obstet Gynecol 41:610–620. https://doi.org/10.1002/uog.12464

    CAS  Article  PubMed  Google Scholar 

  35. ISPD, SMFM, PQF (2018) Joint Position Statement from the International Society for Prenatal Diagnosis (ISPD), the Society for Maternal Fetal Medicine (SMFM), and the Perinatal Quality Foundation (PQF) on the use of genome-wide sequencing for fetal diagnosis. Prenat Diagn 38:6–9. https://doi.org/10.1002/pd.5195

    Article  Google Scholar 

  36. Kalia SS et al (2017) Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 19:249–255. https://doi.org/10.1038/gim.2016.190

    Article  PubMed  Google Scholar 

  37. Kitzman JO et al (2012) Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med 4:137ra176. https://doi.org/10.1126/scitranslmed.3004323

    CAS  Article  Google Scholar 

  38. Kong A et al (2012) Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488:471–475. https://doi.org/10.1038/nature11396

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Langlois S, Benn P, Wilkins-Haug L (2015) Current controversies in prenatal diagnosis 4: pre-conception expanded carrier screening should replace all current prenatal screening for specific single gene disorders. Prenat Diagn 35:23–28. https://doi.org/10.1002/pd.4532

    Article  PubMed  Google Scholar 

  40. Larson JE, Cohen JC (2000) In utero gene therapy. Ochsner J 2:107–110

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lefkowitz RB et al (2016) Clinical validation of a non-invasive prenatal test for genome-wide detection of fetal copy number variants. Am J Obstet Gynecol 215:227.e216–227.e221. https://doi.org/10.1016/j.ajog.2016.02.030

    Article  Google Scholar 

  42. Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, Wainscoat JS (1997) Presence of fetal DNA in maternal plasma and serum. Lancet 350:485–487

    CAS  Article  Google Scholar 

  43. Lo YM et al (2010) Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med 2:61ra91. https://doi.org/10.1126/scitranslmed.3001720

    CAS  Article  PubMed  Google Scholar 

  44. Lord J et al (2019) Prenatal exome sequencing analysis in fetal structural anomalies detected by ultrasonography (PAGE): a cohort study. Lancet 393:747–757. https://doi.org/10.1016/s0140-6736(18)31940-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Martin J et al (2015) Comprehensive carrier genetic test using next-generation deoxyribonucleic acid sequencing in infertile couples wishing to conceive through assisted reproductive technology. Fertil Steril 104:1286–1293. https://doi.org/10.1016/j.fertnstert.2015.07.1166

    CAS  Article  PubMed  Google Scholar 

  46. McKie AB et al (2014) Germline mutations in RYR1 are associated with foetal akinesia deformation sequence/lethal multiple pterygium syndrome. Acta Neuropathol Commun 2:148. https://doi.org/10.1186/s40478-014-0148-0

    Article  PubMed  PubMed Central  Google Scholar 

  47. Meier N et al (2019) Exome sequencing of fetal anomaly syndromes: novel phenotype-genotype discoveries. Eur J Hum Genet 27:730–737. https://doi.org/10.1038/s41431-018-0324-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Meng L et al (2017) Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr. https://doi.org/10.1001/jamapediatrics.2017.3438

    Article  PubMed  PubMed Central  Google Scholar 

  49. Normand EA, Alaimo JT, Van den Veyver IB (2018a) Exome and genome sequencing in reproductive medicine. Fertil Steril 109:213–220. https://doi.org/10.1016/j.fertnstert.2017.12.010

    Article  PubMed  Google Scholar 

  50. Normand EA et al (2018b) Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder genome medicine 10:74. https://doi.org/10.1186/s13073-018-0582-x

    CAS  Article  Google Scholar 

  51. Petrovski S et al (2019) Whole-exome sequencing in the evaluation of fetal structural anomalies: a prospective cohort study. Lancet 393:758–767. https://doi.org/10.1016/S0140-6736(18)32042-7

    CAS  Article  PubMed  Google Scholar 

  52. Reddy UM et al (2012) Karyotype versus microarray testing for genetic abnormalities after stillbirth. N Engl J Med 367:2185–2193. https://doi.org/10.1056/NEJMoa1201569

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Rezaei M et al (2018) A reappraisal of circulating fetal cell noninvasive prenatal testing. Trends Biotechnol. https://doi.org/10.1016/j.tibtech.2018.11.001

    Article  PubMed  Google Scholar 

  54. Richards S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  55. Rifai N, Topol E, Chan E, Lo YM, Wittwer CT (2015) Disruptive innovation in laboratory medicine. Clin Chem 61:1129–1132. https://doi.org/10.1373/clinchem.2015.243667

    CAS  Article  PubMed  Google Scholar 

  56. Sagar R, Walther-Jallow L, David AL, Götherström C, Westgren M (2018) Fetal mesenchymal stromal cells: an opportunity for prenatal cellular therapy. Curr Stem Cell Rep 4:61–68. https://doi.org/10.1007/s40778-018-0118-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Schneider H et al (2018) Prenatal correction of X-linked hypohidrotic ectodermal dysplasia. N Engl J Med 378:1604–1610. https://doi.org/10.1056/NEJMoa1714322

    CAS  Article  PubMed  Google Scholar 

  58. Sun K et al (2018) Size-tagged preferred ends in maternal plasma DNA shed light on the production mechanism and show utility in noninvasive prenatal testing. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.1804134115

    Article  PubMed  Google Scholar 

  59. Suzumori N et al (2018) Compound heterozygous RYR1 mutations by whole exome sequencing in a family with three repeated affected fetuses with fetal akinesia. Eur J Obstet Gynecol Reprod Biol 230:200–202. https://doi.org/10.1016/j.ejogrb.2018.09.013

    CAS  Article  PubMed  Google Scholar 

  60. Toriello HV, Meck JM, Professional P, Guidelines C (2008) Statement on guidance for genetic counseling in advanced paternal age. Genet Med 10:457–460. https://doi.org/10.1097/GIM.0b013e318176fabb

    Article  PubMed  PubMed Central  Google Scholar 

  61. Vestergaard EM et al (2017) On the road to replacing invasive testing with cell-based NIPT: five clinical cases with aneuploidies, microduplication, unbalanced structural rearrangement or mosaicism. Prenat Diagn 37:1120–1124. https://doi.org/10.1002/pd.5150

    CAS  Article  PubMed  Google Scholar 

  62. Vora NL, Hui L (2018) Next-generation sequencing and prenatal ‘omics: advanced diagnostics and new insights into human development. Genet Med 20:791–799. https://doi.org/10.1038/s41436-018-0087-4

    Article  PubMed  PubMed Central  Google Scholar 

  63. Vora NL et al (2017) Prenatal exome sequencing in anomalous fetuses: new opportunities and challenges. Genet Med 19:1207–1216. https://doi.org/10.1038/gim.2017.33

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Vossaert L et al (2018) Reliable detection of subchromosomal deletions and duplications using cell-based noninvasive prenatal testing. Prenat Diagn 38:1069–1078. https://doi.org/10.1002/pd.5377

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Wapner RJ et al (2012) Chromosomal microarray versus karyotyping for prenatal diagnosis. N Engl J Med 367:2175–2184. https://doi.org/10.1056/NEJMoa1203382

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Williams J 3rd, Rad S, Beauchamp S, Ratousi D, Subramaniam V, Farivar S, Pisarska MD (2015) Utilization of noninvasive prenatal testing: impact on referrals for diagnostic testing. Am J Obstet Gynecol 213(102):e101–106. https://doi.org/10.1016/j.ajog.2015.04.005

    Article  Google Scholar 

  67. Wulff CB, Gerds TA, Rode L, Ekelund CK, Petersen OB, Tabor A, Danish Fetal Medicine Study G (2016) Risk of fetal loss associated with invasive testing following combined first-trimester screening for Down syndrome: a national cohort of 147,987 singleton pregnancies. Ultrasound Obstet Gynecol 47:38–44. https://doi.org/10.1002/uog.15820

    CAS  Article  PubMed  Google Scholar 

  68. Yang Y et al (2014) Molecular findings among patients referred for clinical whole-exome sequencing. JAMA 312:1870–1879. https://doi.org/10.1001/jama.2014.14601

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Zhang J et al (2019) Non-invasive prenatal sequencing for multiple Mendelian monogenic disorders using circulating cell-free fetal DNA. Nat Med 25:439–447. https://doi.org/10.1038/s41591-018-0334-x

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work is supported in part by the administrative core of the Baylor College of Medicine Intellectual and Developmental disabilities Research Center, National Institutes of Health (NIH) grant U54HD083092. IVdV also receives support for research on prenatal genome sequencing from NIH grant HD055651. The content is solely the responsibility of the authors and does not represent the official views of the Eunice Kennedy Shriver National Institute of Child Health and Human Development or the National Institutes of Health.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ignatia B. Van den Veyver.

Ethics declarations

Conflict of interest

RS has no conflicts to declare. IVdV conducts research on prenatal genome sequencing research that receives support from Illumina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (DOCX 35 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabbagh, R., Van den Veyver, I.B. The current and future impact of genome-wide sequencing on fetal precision medicine. Hum Genet 139, 1121–1130 (2020). https://doi.org/10.1007/s00439-019-02088-4

Download citation