Considerations for whole exome sequencing unique to prenatal care

Abstract

Whole exome sequencing (WES) is increasingly being used in the prenatal setting. The emerging data support the clinical utility of prenatal WES based on its diagnostic yield, which can be as high as 80% for certain ultrasound findings. However, detailed practice and laboratory guidelines, addressing the indications for prenatal WES and the surrounding technical, interpretation, ethical, and counseling issues, are still lacking. Herein, we review the literature and summarize the most recent findings and applications of prenatal WES. This review offers specialists and clinical genetic laboratorians a body of evidence and expert opinions that can serve as a resource to assist in their practice. Finally, we highlight the emerging technologies that promise a future of prenatal WES without the risks associated with invasive testing.

This is a preview of subscription content, access via your institution.

References

  1. Aarabi M, Sniezek O, Jiang H, Saller DN, Bellissimo D, Yatsenko SA, Rajkovic A (2018) Importance of complete phenotyping in prenatal whole exome sequencing. Hum Genet 137:175–181. https://doi.org/10.1007/s00439-017-1860-1

    CAS  Article  PubMed  Google Scholar 

  2. Abou Tayoun AN, Spinner NB, Rehm HL, Green RC, Bianchi DW (2018) Prenatal DNA sequencing: clinical, counseling, and diagnostic laboratory considerations. Prenat Diagn 38:26–32. https://doi.org/10.1002/pd.5038

    Article  PubMed  Google Scholar 

  3. ACMG Board of Directors (2012) Points to consider in the clinical application of genomic sequencing. Genet Med 14:759–761. https://doi.org/10.1038/gim.2012.74

    Article  Google Scholar 

  4. Adinolfi M, El-Hashemite N, Sherlock J, Ward RH, Petrou M, Rodeck C (1997) Prenatal detection of Hb mutations using transcervical cells. Prenat Diagn 17:539–543

    CAS  Article  Google Scholar 

  5. Alamillo CL et al (2015) Exome sequencing positively identified relevant alterations in more than half of cases with an indication of prenatal ultrasound anomalies. Prenat Diagn 35:1073–1078. https://doi.org/10.1002/pd.4648

    CAS  Article  PubMed  Google Scholar 

  6. Amr SS et al (2018) Allele-specific droplet digital PCR combined with a next-generation sequencing-based algorithm for diagnostic copy number analysis in genes with high homology: proof of concept using Stereocilin. Clin Chem 64:705–714. https://doi.org/10.1373/clinchem.2017.280685

    CAS  Article  PubMed  Google Scholar 

  7. Austin-Tse CA, Mandelker DL, Oza AM, Mason-Suares H, Rehm HL, Amr SS (2018) Analysis of intragenic USH2A copy number variation unveils broad spectrum of unique and recurrent variants. Eur J Med Genet 61:621–626. https://doi.org/10.1016/j.ejmg.2018.04.006

    Article  PubMed  Google Scholar 

  8. Avent ND (2008) RHD genotyping from maternal plasma: guidelines and technical challenges. Methods Mol Biol 444:185–201. https://doi.org/10.1007/978-1-59745-066-9_14

    CAS  Article  PubMed  Google Scholar 

  9. Baylor Genetics (2018) Performance of the newly developed non-invasive prenatal multi-gene sequencing screen. White Paper. https://www.baylorgenetics.com/preseek/. Accessed 1 June 2018

  10. Beaudet AL (2016) Using fetal cells for prenatal diagnosis: history and recent progress. Am J Med Genet C Semin Med Genet 172:123–127. https://doi.org/10.1002/ajmg.c.31487

    CAS  Article  PubMed  Google Scholar 

  11. Bernhardt BA, Soucier D, Hanson K, Savage MS, Jackson L, Wapner RJ (2013) Women’s experiences receiving abnormal prenatal chromosomal microarray testing results. Genet Med 15:139–145. https://doi.org/10.1038/gim.2012.113

    Article  PubMed  Google Scholar 

  12. Best S, Wou K, Vora N, Van der Veyver IB, Wapner R, Chitty LS (2018) Promises, pitfalls and practicalities of prenatal whole exome sequencing. Prenat Diagn 38:10–19. https://doi.org/10.1002/pd.5102

    CAS  Article  PubMed  Google Scholar 

  13. Bischoff FZ, Simpson JL (2006) Endocervical fetal trophoblast for prenatal genetic diagnosis. Curr Opin Obstet Gynecol 18:216–220. https://doi.org/10.1097/01.gco.0000192985.22718.17

    Article  PubMed  Google Scholar 

  14. Bischoff FZ et al (2003) Intact fetal cells in maternal plasma: are they really there? Lancet (London, England) 361:139–140. https://doi.org/10.1016/S0140-6736(03)12191-5

    Article  Google Scholar 

  15. Bolnick JM et al (2014) Trophoblast retrieval and isolation from the cervix (TRIC) for noninvasive prenatal screening at 5–20 weeks of gestation. Fertil Steril 102:135–142. https://doi.org/10.1016/j.fertnstert.2014.04.008

    Article  PubMed  Google Scholar 

  16. Bolnick AD et al (2016a) Trophoblast Retrieval and Isolation from the Cervix for noninvasive, first trimester, fetal gender determination in a carrier of congenital adrenal hyperplasia. Reprod Sci (Thousand Oaks, Calif) 23:717–722. https://doi.org/10.1177/1933719116632922

    CAS  Article  Google Scholar 

  17. Bolnick JM et al (2016b) Altered biomarkers in trophoblast cells obtained noninvasively prior to clinical manifestation of perinatal disease. Sci Rep 6:32382. https://doi.org/10.1038/srep32382

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Boone PM et al (2013) Deletions of recessive disease genes: CNV contribution to carrier states and disease-causing alleles. Genome Res 23:1383–1394. https://doi.org/10.1101/gr.156075.113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Botkin JR et al (2015) Points to consider: ethical, legal, and psychosocial implications of genetic testing in children and adolescents. Am J Hum Genet 97:6–21. https://doi.org/10.1016/j.ajhg.2015.05.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Brady P et al (2016) Clinical implementation of NIPT—technical and biological challenges. Clin Genet 89:523–530. https://doi.org/10.1111/cge.12598

    CAS  Article  PubMed  Google Scholar 

  21. Carss KJ, Hillman SC, Parthiban V, McMullan DJ, Maher ER, Kilby MD, Hurles ME (2014) Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound. Hum Mol Genet 23:3269–3277. https://doi.org/10.1093/hmg/ddu038

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Chandler N et al (2018) Rapid prenatal diagnosis using targeted exome sequencing: a cohort study to assess feasibility and potential impact on prenatal counseling and pregnancy management. Genet Med. https://doi.org/10.1038/gim.2018.30

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chitty LS (2018) Advances in the prenatal diagnosis of monogenic disorders. Prenat Diagn 38:3–5. https://doi.org/10.1002/pd.5208

    Article  PubMed  Google Scholar 

  24. Chitty LS, Mason S, Barrett AN, McKay F, Lench N, Daley R, Jenkins LA (2015) Non-invasive prenatal diagnosis of achondroplasia and thanatophoric dysplasia: next-generation sequencing allows for a safer, more accurate, and comprehensive approach. Prenat Diagn 35:656–662. https://doi.org/10.1002/pd.4583

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Chiu EKL, Hui WWI, Chiu RWK (2018) cfDNA screening and diagnosis of monogenic disorders—where are we heading? Prenat Diagn 38:52–58. https://doi.org/10.1002/pd.5207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Cirigliano V, Sherlock J, Petrou M, Ward RH, Rodeck C, Adinolfi M (1999) Transcervical cells and the prenatal diagnosis of haemoglobin (Hb) mutations. Clin Genet 56:357–361

    CAS  Article  Google Scholar 

  27. Clark MJ et al (2011) Performance comparison of exome DNA sequencing technologies. Nat Biotechnol 29:908–914. https://doi.org/10.1038/nbt.1975

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Clausen FB (2014) Integration of noninvasive prenatal prediction of fetal blood group into clinical prenatal care. Prenat Diagn 34:409–415. https://doi.org/10.1002/pd.4326

    Article  PubMed  Google Scholar 

  29. Committee on Practice Bulletins-Obstetrics CoG, the Society for Maternal-Fetal M (2016) Practice Bulletin No. 163: screening for fetal aneuploidy. Obstet Gynecol 127:e123–e137. https://doi.org/10.1097/aog.0000000000001406

    Article  Google Scholar 

  30. Daley R, Hill M, Chitty LS (2014) Non-invasive prenatal diagnosis: progress and potential. Arch Dis Child Fetal Neonatal Ed 99:F426–F430. https://doi.org/10.1136/archdischild-2013-304828

    Article  PubMed  Google Scholar 

  31. Daoud H et al (2016) Next-generation sequencing for diagnosis of rare diseases in the neonatal intensive care unit. CMAJ 188:E254–E260. https://doi.org/10.1503/cmaj.150823

    Article  PubMed  PubMed Central  Google Scholar 

  32. Drury S, Williams H, Trump N, Boustred C, Lench N, Scott RH, Chitty LS (2015) Exome sequencing for prenatal diagnosis of fetuses with sonographic abnormalities. Prenat Diagn 35:1010–1017. https://doi.org/10.1002/pd.4675

    CAS  Article  PubMed  Google Scholar 

  33. Filges I, Friedman JM (2015) Exome sequencing for gene discovery in lethal fetal disorders—harnessing the value of extreme phenotypes. Prenat Diagn 35:1005–1009. https://doi.org/10.1002/pd.4464

    Article  PubMed  Google Scholar 

  34. Fritz R et al (2015a) Noninvasive detection of trophoblast protein signatures linked to early pregnancy loss using trophoblast retrieval and isolation from the cervix (TRIC). Fertil Steril 104:339–346. https://doi.org/10.1016/j.fertnstert.2015.05.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Fritz R et al (2015b) Trophoblast retrieval and isolation from the cervix (TRIC) is unaffected by early gestational age or maternal obesity. Prenat Diagn 35:1218–1222. https://doi.org/10.1002/pd.4681

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Fu F et al (2018) Whole exome sequencing as a diagnostic adjunct to clinical testing in fetuses with structural abnormalities. Ultrasound Obstet Gynecol 51:493–502. https://doi.org/10.1002/uog.18915

    CAS  Article  PubMed  Google Scholar 

  37. Green RC et al (2013) ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet Med 15:565–574. https://doi.org/10.1038/gim.2013.73

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Imudia AN, Suzuki Y, Kilburn BA, Yelian FD, Diamond MP, Romero R, Armant DR (2009) Retrieval of trophoblast cells from the cervical canal for prediction of abnormal pregnancy: a pilot study. Hum Reprod 24:2086–2092. https://doi.org/10.1093/humrep/dep206

    Article  PubMed  PubMed Central  Google Scholar 

  39. International Society for Prenatal Diagnosis, Society for M, Fetal M, Perinatal Quality F (2018) Joint Position Statement from the International Society for Prenatal Diagnosis (ISPD), the Society for Maternal Fetal Medicine (SMFM), and the Perinatal Quality Foundation (PQF) on the use of genome-wide sequencing for fetal diagnosis. Prenat Diagn 38:6–9. https://doi.org/10.1002/pd.5195

    Article  Google Scholar 

  40. Jain CV et al (2016) Fetal genome profiling at 5 weeks of gestation after noninvasive isolation of trophoblast cells from the endocervical canal. Sci Transl Med 8:363re4. https://doi.org/10.1126/scitranslmed.aah4661

    CAS  Article  PubMed  Google Scholar 

  41. Kalia SS et al (2017) Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): a policy statement of the American College of Medical Genetics and Genomics. Genet Med 19:249–255. https://doi.org/10.1038/gim.2016.190

    Article  PubMed  Google Scholar 

  42. Kalynchuk EJ, Althouse A, Parker LS, Saller DN Jr, Rajkovic A (2015) Prenatal whole-exome sequencing: parental attitudes. Prenat Diagn 35:1030–1036. https://doi.org/10.1002/pd.4635

    CAS  Article  PubMed  Google Scholar 

  43. Kobayashi Y, Yang S, Nykamp K, Garcia J, Lincoln SE, Topper SE (2017) Pathogenic variant burden in the ExAC database: an empirical approach to evaluating population data for clinical variant interpretation. Genome Med 9:13. https://doi.org/10.1186/s13073-017-0403-7

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Korfhage C, Fisch E, Fricke E, Baedker S, Loeffert D (2013) Whole-genome amplification of single-cell genomes for next-generation sequencing. Curr Protoc Mol Biol 104:7–14. https://doi.org/10.1002/0471142727.mb0714s104

    Article  PubMed  Google Scholar 

  45. Korpi-Steiner N, Chiu RWK, Chandrasekharan S, Chitty LS, Evans MI, Jackson JA, Palomaki GE (2017) Emerging considerations for noninvasive prenatal testing. Clin Chem 63:946–953. https://doi.org/10.1373/clinchem.2016.266544

    CAS  Article  PubMed  Google Scholar 

  46. LaDuca H et al (2017) Exome sequencing covers > 98% of mutations identified on targeted next generation sequencing panels. PLoS One 12:e0170843. https://doi.org/10.1371/journal.pone.0170843

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921. https://doi.org/10.1038/35057062

    CAS  Article  PubMed  Google Scholar 

  48. Ledbetter DH et al (1992) Cytogenetic results from the US collaborative study on CVS. Prenat Diagn 12:317–345

    CAS  Article  Google Scholar 

  49. Lee KA et al (2009) PTPN11 analysis for the prenatal diagnosis of Noonan syndrome in fetuses with abnormal ultrasound findings. Clin Genet 75:190–194. https://doi.org/10.1111/j.1399-0004.2008.01085.x

    CAS  Article  PubMed  Google Scholar 

  50. Lei TY et al (2017) Whole-exome sequencing for prenatal diagnosis of fetuses with congenital anomalies of the kidney and urinary tract. Nephrol Dial Transplant 32:1665–1675. https://doi.org/10.1093/ndt/gfx031

    CAS  Article  PubMed  Google Scholar 

  51. Lench N et al (2013) The clinical implementation of non-invasive prenatal diagnosis for single-gene disorders: challenges and progress made. Prenat Diagn 33:555–562. https://doi.org/10.1002/pd.4124

    Article  PubMed  Google Scholar 

  52. Li N et al (2015) The performance of whole genome amplification methods and next-generation sequencing for pre-implantation genetic diagnosis of chromosomal abnormalities. J Genet Genom 42:151–159. https://doi.org/10.1016/j.jgg.2015.03.001

    CAS  Article  Google Scholar 

  53. Lincoln SE et al (2019) A rigorous interlaboratory examination of the need to confirm next-generation sequencing-detected variants with an orthogonal method in clinical genetic testing. J Mol Diagn 21:318–329. https://doi.org/10.1016/j.jmoldx.2018.10.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Loke YW et al (1997) Evaluation of trophoblast HLA-G antigen with a specific monoclonal antibody. Tissue Antigens 50:135–146

    CAS  Article  Google Scholar 

  55. Mandelker D et al (2014) Comprehensive diagnostic testing for stereocilin: an approach for analyzing medically important genes with high homology. J Mol Diagn 16:639–647. https://doi.org/10.1016/j.jmoldx.2014.06.003

    CAS  Article  PubMed  Google Scholar 

  56. Margulies M et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–380. https://doi.org/10.1038/nature03959

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mason-Suares H, Landry L, Lebo MS (2016) Detecting copy number variants via next generation sequencing technologies. Curr Genet Med Rep 3:74–85

    Article  Google Scholar 

  58. McMaster M, Zhou Y, Shorter S, Kapasi K, Geraghty D, Lim KH, Fisher S (1998) HLA-G isoforms produced by placental cytotrophoblasts and found in amniotic fluid are due to unusual glycosylation. J Immunol 160:5922–5928

    CAS  PubMed  Google Scholar 

  59. Meng L et al (2017) Use of exome sequencing for infants in intensive care units: ascertainment of severe single-gene disorders and effect on medical management. JAMA Pediatr 171:e173438. https://doi.org/10.1001/jamapediatrics.2017.3438

    Article  PubMed  PubMed Central  Google Scholar 

  60. Mitchell C et al (2017) Exploring the potential duty of care in clinical genomics under UK law. Med Law Int 17:158–182. https://doi.org/10.1177/0968533217721966

    Article  PubMed  PubMed Central  Google Scholar 

  61. Moser G, Drewlo S, Huppertz B, Armant DR (2018) Trophoblast retrieval and isolation from the cervix: origins of cervical trophoblasts and their potential value for risk assessment of ongoing pregnancies. Hum Reprod Update. https://doi.org/10.1093/humupd/dmy008

    Article  PubMed  PubMed Central  Google Scholar 

  62. Nabieva E et al (2019) Accurate fetal variant calling in the presence of maternal cell contamination. bioRxiv. https://doi.org/10.1101/552414

    Article  Google Scholar 

  63. Nagan N, Faulkner NE, Curtis C, Schrijver I (2011) Laboratory guidelines for detection, interpretation, and reporting of maternal cell contamination in prenatal analyses a report of the association for molecular pathology. J Mol Diagn 13:7–11. https://doi.org/10.1016/j.jmoldx.2010.11.013

    Article  PubMed  PubMed Central  Google Scholar 

  64. Narayanan S, Blumberg B, Clayman ML, Pan V, Wicklund C (2018) Exploring the issues surrounding clinical exome sequencing in the prenatal setting. J Genet Couns. https://doi.org/10.1007/s10897-018-0245-5

    Article  PubMed  Google Scholar 

  65. Norwitz ER, Levy B (2013) Noninvasive prenatal testing: the future is now. Rev Obstet Gynecol 6:48–62

    PubMed  PubMed Central  Google Scholar 

  66. Nuss S, Brebaum D, Grond-Ginsbach C (1994) Maternal cell contamination in amniotic fluid samples as a consequence of the sampling technique. Hum Genet 93:121–124

    CAS  Article  Google Scholar 

  67. Palmor M, Fiester A (2014) Incidental findings of nonparentage: a case for universal nondisclosure. Pediatrics 134:163–168. https://doi.org/10.1542/peds.2013-4182

    Article  PubMed  Google Scholar 

  68. Pangalos C, Hagnefelt B, Lilakos K, Konialis C (2016) First applications of a targeted exome sequencing approach in fetuses with ultrasound abnormalities reveals an important fraction of cases with associated gene defects. PeerJ 4:e1955. https://doi.org/10.7717/peerj.1955

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Park JY, Clark P, Londin E, Sponziello M, Kricka LJ, Fortina P (2015) Clinical exome performance for reporting secondary genetic findings. Clin Chem 61:213–220. https://doi.org/10.1373/clinchem.2014.231456

    CAS  Article  PubMed  Google Scholar 

  70. Rehm HL et al (2013) ACMG clinical laboratory standards for next-generation sequencing. Genet Med 15:733–747. https://doi.org/10.1038/gim.2013.92

    Article  PubMed  PubMed Central  Google Scholar 

  71. Retterer K et al (2016) Clinical application of whole-exome sequencing across clinical indications. Genet Med 18:696–704. https://doi.org/10.1038/gim.2015.148

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Richards S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424. https://doi.org/10.1038/gim.2015.30

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ross LF, Saal HM, David KL, Anderson RR, American Academy of P, American College of Medical G, Genomics (2013) Technical report: ethical and policy issues in genetic testing and screening of children. Genet Med 15:234–245. https://doi.org/10.1038/gim.2012.176

    Article  PubMed  Google Scholar 

  74. Sanghvi RV et al (2018) Characterizing reduced coverage regions through comparison of exome and genome sequencing data across 10 centers. Genet Med 20:855–866. https://doi.org/10.1038/gim.2017.192

    Article  PubMed  Google Scholar 

  75. Saunders CJ et al (2012) Rapid whole-genome sequencing for genetic disease diagnosis in neonatal intensive care units. Sci Transl Med 4:154ra. https://doi.org/10.1126/scitranslmed.3004041

    CAS  Article  Google Scholar 

  76. Schrijver I et al (2012) Opportunities and challenges associated with clinical diagnostic genome sequencing: a report of the Association for Molecular Pathology. J Mol Diagn 14:525–540. https://doi.org/10.1016/j.jmoldx.2012.04.006

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Shendure J et al (2005) Accurate multiplex polony sequencing of an evolved bacterial genome. Science 309:1728–1732. https://doi.org/10.1126/science.1117389

    CAS  Article  PubMed  Google Scholar 

  78. Shettles LB (1971) Human blastocyst grown in vitro in ovulation cervical mucus. Nature 229:343

    CAS  Article  Google Scholar 

  79. Soden SE et al (2014) Effectiveness of exome and genome sequencing guided by acuity of illness for diagnosis of neurodevelopmental disorders. Sci Transl Med 6:265ra. https://doi.org/10.1126/scitranslmed.3010076

    CAS  Article  Google Scholar 

  80. Soussi T, Leroy B, Devir M, Rosenberg S (2019) High prevalence of cancer-associated TP53 variants in the gnomAD database: a word of caution concerning the use of variant filtering. Hum Mutat 40:516–524. https://doi.org/10.1002/humu.23717

    CAS  Article  PubMed  Google Scholar 

  81. Steed HL, Tomkins DJ, Wilson DR, Okun N, Mayes DC (2002) Maternal cell contamination of amniotic fluid samples obtained by open needle versus trocar technique of amniocentesis. J Obstet Gynaecol Can 24:233–236

    Article  Google Scholar 

  82. Steinberg S, Katsanis S, Moser A, Cutting G (2005) Biochemical analysis of cultured chorionic villi for the prenatal diagnosis of peroxisomal disorders: biochemical thresholds and molecular sensitivity for maternal cell contamination detection. J Med Genet 42:38–44. https://doi.org/10.1136/jmg.2004.023556

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Stojilkovic-Mikic T, Mann K, Docherty Z, Mackie Ogilvie C (2005) Maternal cell contamination of prenatal samples assessed by QF-PCR genotyping. Prenat Diagn 25:79–83. https://doi.org/10.1002/pd.1089

    Article  PubMed  Google Scholar 

  84. Tankard RM, Bennett MF, Degorski P, Delatycki MB, Lockhart PJ, Bahlo M (2018) Detecting expansions of tandem repeats in cohorts sequenced with short-read sequencing data. Am J Hum Genet 103:858–873. https://doi.org/10.1016/j.ajhg.2018.10.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Timmermans S, Buchbinder M (2010) Patients-in-waiting: living between sickness and health in the genomics era. J Health Soc Behav 51:408–423. https://doi.org/10.1177/0022146510386794

    Article  PubMed  Google Scholar 

  86. Venter JC et al (2001) The sequence of the human genome. Science 291:1304–1351. https://doi.org/10.1126/science.1058040

    CAS  Article  Google Scholar 

  87. Vora NL et al (2017) Prenatal exome sequencing in anomalous fetuses: new opportunities and challenges. Genet Med 19:1207–1216. https://doi.org/10.1038/gim.2017.33

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Voracek M, Haubner T, Fisher ML (2008) Recent decline in nonpaternity rates: a cross-temporal meta-analysis. Psychol Rep 103:799–811. https://doi.org/10.2466/pr0.103.3.799-811

    Article  PubMed  Google Scholar 

  89. Walknowska J, Conte FA, Grumbach MM (1969) Practical and theoretical implications of fetal–maternal lymphocyte transfer. Lancet (London, England) 1:1119–1122

    CAS  Article  Google Scholar 

  90. Weida J et al (2017) Prevalence of maternal cell contamination in amniotic fluid samples. J Matern Fetal Neonatal Med 30:2133–2137. https://doi.org/10.1080/14767058.2016.1240162

    Article  PubMed  Google Scholar 

  91. Westerfield LE et al (2015) Reproductive genetic counseling challenges associated with diagnostic exome sequencing in a large academic private reproductive genetic counseling practice. Prenat Diagn 35:1022–1029. https://doi.org/10.1002/pd.4674

    Article  PubMed  Google Scholar 

  92. Whiffin N et al (2017) Using high-resolution variant frequencies to empower clinical genome interpretation. Genet Med 19:1151–1158. https://doi.org/10.1038/gim.2017.26

    Article  PubMed  PubMed Central  Google Scholar 

  93. Willig LK et al (2015) Whole-genome sequencing for identification of Mendelian disorders in critically ill infants: a retrospective analysis of diagnostic and clinical findings. Lancet Respir Med 3:377–387. https://doi.org/10.1016/S2213-2600(15)00139-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Yang Y et al (2013) Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med 369:1502–1511. https://doi.org/10.1056/NEJMoa1306555

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  95. Yang Y et al (2014) Molecular findings among patients referred for clinical whole-exome sequencing. Jama 312:1870–1879. https://doi.org/10.1001/jama.2014.14601

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Yates CL et al (2017) Whole-exome sequencing on deceased fetuses with ultrasound anomalies: expanding our knowledge of genetic disease during fetal development. Genet Med 19:1171–1178. https://doi.org/10.1038/gim.2017.31

    Article  PubMed  Google Scholar 

  97. Yu N et al (2002) Disputed maternity leading to identification of tetragametic chimerism. N Engl J Med 346:1545–1552. https://doi.org/10.1056/NEJMoa013452

    Article  PubMed  Google Scholar 

  98. Yu Q, Li Q, Gao S, Su Y, Deng Z (2011) Congenital tetragametic blood chimerism explains a case of questionable paternity. J Forensic Sci 56:1346–1348. https://doi.org/10.1111/j.1556-4029.2011.01794.x

    CAS  Article  PubMed  Google Scholar 

  99. Zhao C et al (2015) Detection of fetal subchromosomal abnormalities by sequencing circulating cell-free DNA from maternal plasma. Clin Chem 61:608–616. https://doi.org/10.1373/clinchem.2014.233312

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Matt Lebo, PhD and Kalotina Machini, PhD, CGC for critical review of the manuscript.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Abou Tayoun or Heather Mason-Suares.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 45 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abou Tayoun, A., Mason-Suares, H. Considerations for whole exome sequencing unique to prenatal care. Hum Genet 139, 1149–1159 (2020). https://doi.org/10.1007/s00439-019-02085-7

Download citation