Human Genetics

, Volume 137, Issue 2, pp 141–150 | Cite as

Identification of rare RTN3 variants in Alzheimer’s disease in Han Chinese

  • Yongyi Zou
  • Wanxia He
  • Kangli Wang
  • Hailong Han
  • Tingting Xiao
  • Xumeng Chen
  • Bin Zhou
  • Jieqiong Tan
  • Kun Xia
  • Beisha Tang
  • Chao Chen
  • Lu Shen
  • Riqiang Yan
  • Zhuohua Zhang
Original Investigation

Abstract

Reticulon 3 (RTN3) is a neuronally-expressed reticulon family protein that was previously shown to negatively regulate BACE1, a protease that is required for the generation of β-amyloid peptides (Aβ) from amyloid precursor protein. Despite biochemical and morphological evidence that supports a role of RTN3 in the formation of neuritic amyloid plaques, no systematic analyses of RTN3 mutations in patients with Alzheimer’s disease (AD) have yet been reported. RTN3 were targeted sequenced in 154 sporadic early-onset and 285 late-onset AD patients. Luciferase reporter assay and kymographs were performed to analysis the expression of RNT3 and BACE1-RFP particle mobility on cells transfected with wild-type or variants RTN3 constructs. We identified heterozygous variants such as c.-8G > T, c.17C > A, c.42C > T, and c.116C > T from patients in the early-onset AD group and c.-8G > T, c.17C > A, from patients in the late-onset AD group. Such variants of RTN3 were not observed in control individuals. Further biochemical studies show that the RTN3 c.-8G > T variant in the 5′-untranslated region appears to cause reduced expression of RTN3. The RTN3 c.116 C > T variant causes a change of codon T39 to M39 (T39 M). Overexpression of RTN3 T39 M in cultured neurons led to impaired axonal transport of BACE1. The variants found in this study are likely genetic modifiers for RTN3-mediated formation of neuritic plaques in AD.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81429002, 31330031 and 81161120498), the Discipline Innovative Engineering Plan (111 Program) of China, and the Central South University Graduate Innovation Fund (2015zzts094). RY is also supported by NIH Grants AG025493, NS074256, and AG046929.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest

References

  1. Carson R, McKnight AJ, Todd S, Liu WW, Heggarty S, Craig D, McGuinness B, Irvine GB, Passmore AP, Johnston JA (2009) Variation in RTN3 and PPIL2 genes does not influence platelet membrane beta-secretase activity or susceptibility to alzheimer’s disease in the northern Irish population. Neuromolecular Med 11(4):337–344CrossRefPubMedGoogle Scholar
  2. De Strooper B, Vassar R, Golde T (2010) The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6(2):99–107CrossRefPubMedPubMedCentralGoogle Scholar
  3. Deng M, He W, Tan Y, Han H, Hu X, Xia K, Zhang Z, Yan R (2013) Increased expression of reticulon 3 in neurons leads to reduced axonal transport of beta site amyloid precursor protein-cleaving enzyme 1. J Biol Chem 288(42):30236–30245CrossRefPubMedPubMedCentralGoogle Scholar
  4. Gaiteri C, Mostafavi S, Honey CJ, De Jager PL, Bennett DA (2016) Genetic variants in Alzheimer disease—molecular and brain network approaches. Nat Rev Neurol 12(7):413–427CrossRefPubMedPubMedCentralGoogle Scholar
  5. Haass C (2004) Take five–BACE and the gamma-secretase quartet conduct Alzheimer’s amyloid beta-peptide generation. EMBO J 23(3):483–488CrossRefPubMedPubMedCentralGoogle Scholar
  6. He W, Lu Y, Qahwash I, Hu XY, Chang A, Yan R (2004) Reticulon family members modulate BACE1 activity and amyloid-beta peptide generation. Nat Med 10(9):959–965CrossRefPubMedGoogle Scholar
  7. He W, Hu X, Shi Q, Zhou X, Lu Y, Fisher C, Yan R (2006) Mapping of interaction domains mediating binding between BACE1 and RTN/Nogo proteins. J Mol Biol 363(3):625–634CrossRefPubMedGoogle Scholar
  8. Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31(3):545–548PubMedGoogle Scholar
  9. Hu X, Shi Q, Zhou X, He W, Yi H, Yin X, Gearing M, Levey A, Yan R (2007) Transgenic mice overexpressing reticulon 3 develop neuritic abnormalities. EMBO J 26(11):2755–2767CrossRefPubMedPubMedCentralGoogle Scholar
  10. Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy KE, Southan CD, Ryan DM et al (1999) Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci 14(6):419–427CrossRefPubMedGoogle Scholar
  11. Jiao B, Liu X, Tang B, Hou L, Zhou L, Zhang F, Zhou Y, Guo J, Yan X, Shen L (2014a) Investigation of TREM2, PLD3, and UNC5C variants in patients with Alzheimer’s disease from mainland China. Neurobiol Aging 35(10):2422e9–2422e11CrossRefGoogle Scholar
  12. Jiao B, Tang B, Liu X, Xu J, Wang Y, Zhou L, Zhang F, Yan X, Zhou Y, Shen L (2014b) Mutational analysis in early-onset familial Alzheimer’s disease in Mainland China. Neurobiol Aging 35(8):1957 (e1–6) CrossRefPubMedGoogle Scholar
  13. Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R (2013) The Alzheimer’s beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 126(3):329–352CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kume H, Murayama KS, Araki W (2009) The two-hydrophobic domain tertiary structure of reticulon proteins is critical for modulation of beta-secretase BACE1. J Neurosci Res 87(13):2963–2972CrossRefPubMedGoogle Scholar
  15. Lin X, Koelsch G, Wu S, Downs D, Dashti A, Tang J (2000) Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci USA 97(4):1456–1460CrossRefPubMedPubMedCentralGoogle Scholar
  16. Montenegro G, Rebelo AP, Connell J, Allison R, Babalini C, D’Aloia M, Montieri P, Schule R, Ishiura H, Price J et al (2012) Mutations in the ER-shaping protein reticulon 2 cause the axon-degenerative disorder hereditary spastic paraplegia type 12. J Clin Invest 122(2):538–544CrossRefPubMedPubMedCentralGoogle Scholar
  17. Murayama KS, Kametani F, Saito S, Kume H, Akiyama H, Araki W (2006) Reticulons RTN3 and RTN4-B/C interact with BACE1 and inhibit its ability to produce amyloid beta-protein. Eur J Neurosci 24(5):1237–1244CrossRefPubMedGoogle Scholar
  18. Oertle T, Schwab ME (2003) Nogo and its paRTNers. Trends Cell Biol 13(4):187–194CrossRefPubMedGoogle Scholar
  19. Park JH, Gimbel DA, GrandPre T, Lee JK, Kim JE, Li W, Lee DH, Strittmatter SM (2006) Alzheimer precursor protein interaction with the Nogo-66 receptor reduces amyloid-beta plaque deposition. J Neurosci 26(5):1386–1395CrossRefPubMedPubMedCentralGoogle Scholar
  20. Prior M, Shi Q, Hu X, He W, Levey A, Yan R (2010) RTN/Nogo in forming Alzheimer’s neuritic plaques. Neurosci Biobehav Rev 34(8):1201–1206CrossRefPubMedPubMedCentralGoogle Scholar
  21. Renvoise B, Blackstone C (2010) Emerging themes of ER organization in the development and maintenance of axons. Curr Opin Neurobiol 20(5):531–537CrossRefPubMedPubMedCentralGoogle Scholar
  22. Schwab ME, Strittmatter SM (2014) Nogo limits neural plasticity and recovery from injury. Curr Opin Neurobiol 27:53–60CrossRefPubMedGoogle Scholar
  23. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8(6):595–608CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sharoar MG, Yan R (2016) Effects of altered RTN3 expression on BACE1 activity and Alzheimer’s neuritic plaques. Rev Neurosci 28(2):145–154Google Scholar
  25. Sharoar MG, Shi Q, Ge Y, He W, Hu X, Perry G, Zhu X, Yan R (2016) Dysfunctional tubular endoplasmic reticulum constitutes a pathological feature of Alzheimer’s disease. Mol Psychiatry 21(9):1263–1271CrossRefPubMedGoogle Scholar
  26. Shi Q, Hu X, Prior M, Yan R (2009) The occurrence of aging-dependent reticulon 3 immunoreactive dystrophic neurites decreases cognitive function. J Neurosci 29(16):5108–5115CrossRefPubMedPubMedCentralGoogle Scholar
  27. Shi Q, Prior M, Zhou X, Tang X, He W, Hu X, Yan R (2013) Preventing formation of reticulon 3 immunoreactive dystrophic neurites improves cognitive function in mice. J Neurosci 33(7):3059–3066CrossRefPubMedPubMedCentralGoogle Scholar
  28. Shi Q, Ge Y, Sharoar MG, He W, Xiang R, Zhang Z, Hu X, Yan R (2014) Impact of RTN3 deficiency on expression of BACE1 and amyloid deposition. J Neurosci 34(42):13954–13962CrossRefPubMedPubMedCentralGoogle Scholar
  29. Shi Q, Ge Y, He W, Hu X, Yan R (2017) RTN1 and RTN3 protein are differentially associated with senile plaques in Alzheimer’s brains. Sci Rep 7(1):6145CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sinha S, Anderson JP, Barbour R, Basi GS, Caccavello R, Davis D, Doan M, Dovey HF, Frigon N, Hong J et al (1999) Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature 402(6761):537–540CrossRefPubMedGoogle Scholar
  31. Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440):735–741CrossRefPubMedGoogle Scholar
  32. Voeltz GK, Prinz WA, Shibata Y, Rist JM, Rapoport TA (2006) A class of membrane proteins shaping the tubular endoplasmic reticulum. Cell 124(3):573–586CrossRefPubMedGoogle Scholar
  33. Wojcik S, Engel WK, Yan R, McFerrin J, Askanas V (2007) NOGO is increased and binds to BACE1 in sporadic inclusion-body myositis and in A beta PP-overexpressing cultured human muscle fibers. Acta Neuropathol 114(5):517–526CrossRefPubMedGoogle Scholar
  34. Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC, Mathews WR, Buhl AE et al (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature 402(6761):533–537CrossRefPubMedGoogle Scholar
  35. Yan R, Shi Q, Hu X, Zhou X (2006) Reticulon proteins: emerging players in neurodegenerative diseases. Cell Mol Life Sci 63(7–8):877–889CrossRefPubMedGoogle Scholar
  36. Yu JT, Tan L, Hardy J (2014) Apolipoprotein E in Alzheimer’s disease: an update. Annu Rev Neurosci 37:79–100CrossRefPubMedGoogle Scholar
  37. Zhao B, Pan BS, Shen SW, Sun X, Hou ZZ, Yan R, Sun FY (2013) Diabetes-induced central neuritic dystrophy and cognitive deficits are associated with the formation of oligomeric reticulon-3 via oxidative stress. J Biol Chem 288(22):15590–15599CrossRefPubMedPubMedCentralGoogle Scholar
  38. Zivelin A, Rosenberg N, Peretz H, Amit Y, Kornbrot N, Seligsohn U (1997) Improved method for genotyping apolipoprotein E polymorphisms by a PCR-based assay simultaneously utilizing two distinct restriction enzymes. Clin Chem 43(9):1657–1659PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Molecular Precision Medicine, Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Department of Neurosciences, Lerner Research InstituteCleveland ClinicClevelandUSA
  3. 3.Department of Neurology, Xiangya HospitalCentral South UniversityChangshaChina
  4. 4.Center for Medical Genetics, School of Life SciencesCentral South UniversityChangshaChina

Personalised recommendations