Human Genetics

, Volume 137, Issue 2, pp 129–139 | Cite as

Reconstructing the demographic history of the Himalayan and adjoining populations

  • Rakesh Tamang
  • Gyaneshwer Chaubey
  • Amrita Nandan
  • Periyasamy Govindaraj
  • Vipin Kumar Singh
  • Niraj Rai
  • Chandana Basu Mallick
  • Vishwas Sharma
  • Varun Kumar Sharma
  • Anish M. Shah
  • Albert Lalremruata
  • Alla G. Reddy
  • Deepa Selvi Rani
  • Pilot Doviah
  • Neetu Negi
  • Yarin Hadid
  • Veena Pande
  • Satti Vishnupriya
  • George van Driem
  • Doron M. Behar
  • Tikaram Sharma
  • Lalji Singh
  • Richard Villems
  • Kumarasamy Thangaraj
Original Investigation

Abstract

The rugged topography of the Himalayan region has hindered large-scale human migrations, population admixture and assimilation. Such complexity in geographical structure might have facilitated the existence of several small isolated communities in this region. We have genotyped about 850,000 autosomal markers among 35 individuals belonging to the four major populations inhabiting the Himalaya and adjoining regions. In addition, we have genotyped 794 individuals belonging to 16 ethnic groups from the same region, for uniparental (mitochondrial and Y chromosomal DNA) markers. Our results in the light of various statistical analyses suggest a closer link of the Himalayan and adjoining populations to East Asia than their immediate geographical neighbours in South Asia. Allele frequency-based analyses likely support the existence of a specific ancestry component in the Himalayan and adjoining populations. The admixture time estimate suggests a recent westward migration of populations living to the East of the Himalaya. Furthermore, the uniparental marker analysis among the Himalayan and adjoining populations reveal the presence of East, Southeast and South Asian genetic signatures. Interestingly, we observed an antagonistic association of Y chromosomal haplogroups O3 and D clines with the longitudinal distance. Thus, we summarise that studying the Himalayan and adjoining populations is essential for a comprehensive reconstruction of the human evolutionary and ethnolinguistic history of eastern Eurasia.

Notes

Acknowledgements

During the revision of this manuscript, we have lost our senior collegue and mentor Dr. Lalji Singh, we dedicate this article to him to show our respect for his dedication to Science. We thank all the volunteers for their kind participation in this study. All the individuals assisting the sample collection are highly appreciated for their timely help and cooperation. RT was supported by CSIR_SRF and European Social Funds Doctoral Studies and Internationalisation Programme DoRa. GC is supported by Estonian team grant (PRG-213), RV was supported by Estonian Institutional Research Grants IUT24-1, KT was supported by the Council of Scientific and Industrial Research (CSIR), Government of India, LS was supported by DST, Government of India and CBM was supported by Marie Sklodowska- Curie Actions individual fellowship (Grant-70429). We acknowledge the late R Rajkumar for his contribution in sequencing some Y chromosome and mtDNA markers among the studied populations.

Compliance with ethical standards

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary material

439_2018_1867_MOESM1_ESM.docx (57 kb)
Supplementary material 1 (DOCX 57 kb)
439_2018_1867_MOESM2_ESM.pdf (7.7 mb)
Supplementary material 2 (PDF 7851 kb)
439_2018_1867_MOESM3_ESM.pdf (8.5 mb)
Supplementary material 3 (PDF 8676 kb)

References

  1. Adhikari K, Fuentes-Guajardo M, Quinto-Sánchez M et al (2016) A genome-wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation. Nat Commun 7:11616CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aggarwal R, Ramadevi J, Singh L (2003) Ancient origin and evolution of the Indian wolf: evidence from mitochondrial DNA typing of wolves from Trans-Himalayan region and Pennisular India. Genome Biol 4:p6CrossRefGoogle Scholar
  3. Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664CrossRefPubMedPubMedCentralGoogle Scholar
  4. Basu Mallick C, Iliescu FM, Möls M et al (2013) The light skin allele of SLC24A5 in South Asians and Europeans shares identity by descent. PLoS Genet 9:e1003912CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bhandari S, Zhang X, Cui C et al (2015) Genetic evidence of a recent Tibetan ancestry to Sherpas in the Himalayan region. Sci Rep 5:16249CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bryk J, Hardouin E, Pugach I et al (2008) Positive selection in East Asians for an EDAR allele that enhances NF-kappaB activation. PLoS ONE 3:e2209CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4:7.  https://doi.org/10.1186/s13742-015-0047-8 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chaubey G, Metspalu M, Choi Y et al (2011) Population genetic structure in indian austroasiatic speakers: the role of landscape barriers and sex-specific admixture. Mol Biol Evol 28:1013–1024CrossRefPubMedGoogle Scholar
  9. Chaubey G, Kadian A, Bala S, Rao VR (2015) Genetic affinity of the Bhil, Kol and Gond mentioned in epic Ramayana. PLoS One 10:e0127655CrossRefPubMedPubMedCentralGoogle Scholar
  10. Corvinus G, Erlangen Institut für Ur-und Frühgeschichte (2007) Prehistoric cultures in Nepal: from the Early Palaeolithic to the Neolithic and the quaternary geology of the Dang-Deokhuri Dun Valleys. Otto Harrassowitz, Aryan Books International, New Delhi, p 646Google Scholar
  11. Debnath M, Palanichamy MG, Mitra B et al (2011) Y-chromosome haplogroup diversity in the sub-Himalayan Terai and Duars populations of East India. J Hum Genet 56:765–771CrossRefPubMedGoogle Scholar
  12. Fedorova SA, Reidla M, Metspalu E et al (2013) Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): implications for the peopling of Northeast Eurasia. BMC Evol Biol 13:127CrossRefPubMedPubMedCentralGoogle Scholar
  13. Field J, Petraglia M, Lahr M (2007) The southern dispersal hypothesis and the South Asian archaeological record: examination of dispersal routes through GIS analysis. J Anthropol Archaeol 26:88–108CrossRefGoogle Scholar
  14. Fu Q, Li H, Moorjani P et al (2014) Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514:445–449CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fujimoto A, Kimura R, Ohashi J et al (2008) A scan for genetic determinants of human hair morphology: EDAR is associated with Asian hair thickness. Hum Mol Genet 17:835–843CrossRefPubMedGoogle Scholar
  16. Ganjoo R, Ota S (2012) Mountain environment and early human adaptation in NW Himalaya, India: a case study of Siwalik Hill Range and Leh valley. Quat Int 269:31–37CrossRefGoogle Scholar
  17. Gayden T, Cadenas AM, Regueiro M et al (2007) The Himalayas as a directional barrier to gene flow. Am J Hum Genet 80:884–894CrossRefPubMedPubMedCentralGoogle Scholar
  18. Green RE, Krause J, Briggs AW et al (2010) A draft sequence of the Neandertal genome. Science 328:710–722CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hackinger S, Kraaijenbrink T, Xue Y et al (2016) Wide distribution and altitude correlation of an archaic high-altitude-adaptive EPAS1 haplotype in the Himalayas. Hum Genet 135:393–402CrossRefPubMedPubMedCentralGoogle Scholar
  20. Huerta-Sánchez E, Jin X, Asan et al (2014) Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512:194–197CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jonnalagadda M, Ozarkar S, Mushrif-Tripathy V (2011) Population affinities of Parsis in the Indian subcontinent. Int J Osteoarchaeol 21:103–110CrossRefGoogle Scholar
  22. Kamberov YG, Wang S, Tan J et al (2013) Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell 152:691–702CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kang L, Wang C-C, Chen F et al (2016) Northward genetic penetration across the Himalayas viewed from Sherpa people. Mitochondrial DNA 27:342–349CrossRefPubMedGoogle Scholar
  24. Khanduri B (2002) Archaeology of central Himalaya: a review. Puraratna Emerg Trends Archaeol Art Anthropol Conserv Hist Honour Shri Jagat Pati Joshi 1:213Google Scholar
  25. Kimura R, Yamaguchi T, Takeda M et al (2009) A common variation in EDAR is a genetic determinant of shovel-shaped incisors. Am J Hum Genet 85:528–535CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kirin M, McQuillan R, Franklin CS et al (2010) Genomic runs of homozygosity record population history and consanguinity. PLoS One 5:e13996CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lamason RL, Mohideen M-AP, Mest JR et al (2005) SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans. Science 310:1782–1786CrossRefPubMedGoogle Scholar
  28. Lawson DJ, Hellenthal G, Myers S, Falush D (2012) Inference of population structure using dense haplotype data. PLoS Genet 8:e1002453CrossRefPubMedPubMedCentralGoogle Scholar
  29. Leipe C, Demske D, Tarasov PE et al (2014) Potential of pollen and non-pollen palynomorph records from Tso Moriri (Trans-Himalaya, NW India) for reconstructing Holocene limnology and human–environmental interactions. Quat Int 348:113–129CrossRefGoogle Scholar
  30. Loh P-R, Lipson M, Patterson N et al (2013) Inferring admixture histories of human populations using linkage disequilibrium. Genetics 193:1233–1254CrossRefPubMedPubMedCentralGoogle Scholar
  31. Lu D, Lou H, Yuan K et al (2016) Ancestral origins and genetic history of Tibetan highlanders. Am J Hum Genet.  https://doi.org/10.1016/j.ajhg.2016.07.002 Google Scholar
  32. Metspalu M, Romero IG, Yunusbayev B et al (2011) Shared and unique components of human population structure and genome-wide signals of positive selection in South Asia. Am J Hum Genet 89:731–744CrossRefPubMedPubMedCentralGoogle Scholar
  33. Meyer M, Kircher M, Gansauge M-T, et al (2012) A high-coverage genome sequence from an archaic Denisovan individualGoogle Scholar
  34. Mishra A, Nizammuddin S, Mallick CB et al (2017) Genotype-phenotype study of the middle Gangetic plain in India shows association of rs2470102 with skin pigmentation. J Invest Dermatol 137:670–677CrossRefPubMedGoogle Scholar
  35. Nandy S, Rao K (2001) Census 2001: population dynamics of Indian Himalaya. Envis Bull 9:1–6Google Scholar
  36. Papiha SS, Mastana SS, Stephenson A (1989) Serogenetic investigations of Tibetans and Himachalis from Himachal Pradesh, India: genetic relationship between Tibetans and certain selected mongoloid populations. Jinrui Idengaku Zasshi 34:143–157CrossRefPubMedGoogle Scholar
  37. Patterson N, Moorjani P, Luo Y et al (2012) Ancient admixture in human history. Genetics 192:1065–1093CrossRefPubMedPubMedCentralGoogle Scholar
  38. Patterson N, Price AL, Reich D (2006) Population Structure and Eigenanalysis. PLoS Genetics 2 (12):e190CrossRefPubMedPubMedCentralGoogle Scholar
  39. Prufer K, Racimo F, Patterson N et al (2014) The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505:43–49CrossRefPubMedGoogle Scholar
  40. Qin P, Stoneking M (2015) Denisovan ancestry in East Eurasian and native American populations. Mol Biol Evol 32:2665–2674.  https://doi.org/10.1093/molbev/msv141 CrossRefPubMedGoogle Scholar
  41. Qin Z, Yang Y, Kang L et al (2010) A mitochondrial revelation of early human migrations to the Tibetan Plateau before and after the last glacial maximum. Am J Phys Anthropol 143:555–569CrossRefPubMedGoogle Scholar
  42. Qiu J (2015) Who are the Tibetans? Science 347:708–711CrossRefPubMedGoogle Scholar
  43. Reddy BM, Langstieh BT, Kumar V et al (2007) Austro-Asiatic tribes of Northeast India provide hitherto missing genetic link between South and Southeast Asia. PLoS ONE 2:e1141CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sabeti PC, Varilly P, Fry B et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449:913–918CrossRefPubMedPubMedCentralGoogle Scholar
  45. Sankararaman S, Mallick S, Patterson N, Reich D (2016) The combined landscape of Denisovan and Neanderthal ancestry in present-day humansGoogle Scholar
  46. Schick KD (1994) The Movius Line reconsidered: perspectives on the earlier Paleolithic of eastern Asia. In: Corruccini RS, Ciochon RL (eds) Integrative Paths to the Past, Prentice Hall, New jersey, pp 569–596Google Scholar
  47. Su B, Xiao C, Deka R et al (2000) Y chromosome haplotypes reveal prehistorical migrations to the Himalayas. Hum Genet 107:582–590CrossRefPubMedGoogle Scholar
  48. Tewari R (2007) Some important stone images from Uttaranchal Himalaya. South Asian Stud 23:95–106CrossRefGoogle Scholar
  49. Torroni A, Miller JA, Moore LG et al (1994) Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. Am J Phys Anthropol 93:189–199CrossRefPubMedGoogle Scholar
  50. Van Driem G (2001) Languages of the Himalayas: an ethnolinguistic handbook.  Handbuch der Orientalistik. Leiden, BrillGoogle Scholar
  51. Wang H-W, Li Y-C, Sun F et al (2012) Revisiting the role of the Himalayas in peopling Nepal: insights from mitochondrial genomes. J Hum Genet 57:228–234CrossRefPubMedGoogle Scholar
  52. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370PubMedGoogle Scholar
  53. Wong EH, Khrunin A, Nichols L et al (2017) Reconstructing genetic history of Siberian and Northeastern European populations. Genome Res 27:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yi X, Liang Y, Huerta-Sanchez E et al (2010) Sequencing of 50 human exomes reveals adaptation to high altitude. Science.  https://doi.org/10.1126/science.1190371 Google Scholar
  55. Zhang C, Lu Y, Feng Q et al (2017) Differentiated demographic histories and local adaptations between Sherpas and Tibetans. Genome Biol 18:115.  https://doi.org/10.1186/s13059-017-1242-y CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Rakesh Tamang
    • 1
    • 2
    • 3
    • 4
  • Gyaneshwer Chaubey
    • 5
    • 6
  • Amrita Nandan
    • 4
  • Periyasamy Govindaraj
    • 4
    • 7
  • Vipin Kumar Singh
    • 4
  • Niraj Rai
    • 4
    • 8
  • Chandana Basu Mallick
    • 5
    • 9
  • Vishwas Sharma
    • 4
  • Varun Kumar Sharma
    • 4
  • Anish M. Shah
    • 4
  • Albert Lalremruata
    • 4
  • Alla G. Reddy
    • 4
  • Deepa Selvi Rani
    • 4
  • Pilot Doviah
    • 4
  • Neetu Negi
    • 10
  • Yarin Hadid
    • 11
  • Veena Pande
    • 10
  • Satti Vishnupriya
    • 2
  • George van Driem
    • 12
  • Doron M. Behar
    • 5
  • Tikaram Sharma
    • 13
  • Lalji Singh
    • 4
    • 14
  • Richard Villems
    • 3
    • 5
  • Kumarasamy Thangaraj
    • 4
  1. 1.Department of ZoologyUniversity of CalcuttaKolkataIndia
  2. 2.Department of GeneticsOsmania UniversityHyderabadIndia
  3. 3.Department of Evolutionary BiologyUniversity of TartuTartuEstonia
  4. 4.CSIR-Centre for Cellular and Molecular BiologyHyderabadIndia
  5. 5.Evolutionary Biology GroupEstonian BiocentreTartuEstonia
  6. 6.Cytogenetics Laboratory, Department of ZoologyBanaras Hindu UniversityVaranasiIndia
  7. 7.Neuromuscular Laboratory, Department of NeuropathologyNational Institute of Mental Health and NeurosciencesBengaluruIndia
  8. 8.Birbal Sahni Institute of PalaeosciencesLucknowIndia
  9. 9.The Roslin InstituteUniversity of EdinburghEdinburghUK
  10. 10.Department of BiotechnologyKumaun UniversityNainitalIndia
  11. 11.The Genomic LaboratoryThe Simon Winter Institute For Human Genetics, The Bnai-Zion Medical CenterHaifaIsrael
  12. 12.Himalayan Languages Project, Institut für SprachwissenschaftUniversität BernBern 9Switzerland
  13. 13.Department of ZoologyBanaras Hindu UniversityVaranasiIndia
  14. 14.Genome FoundationHyderabadIndia

Personalised recommendations