In vitro characterization of the site-specific recombination system based on genus Habenivirus ϕRSM small serine integrase

Abstract

The genus Habenivirus which includes Ralstonia virus ϕRSM encodes a site-specific integrase of a small serine recombinase belonging to the resolvase/invertase family. Here we describe the integrative/excisive recombination reactions mediated by ϕRSM integrase using in vitro assays. The products of attP/attB recombination, i.e. attL and attR, were exactly identical to those found in the prophage ϕRSM in R. solanacearum strains. The minimum size of attB required for integration was determined to be 37 bp, containing a 13 bp core and flanking sequences of 4 bp on the left and 20 bp on the right. ϕRSM integrative recombination proceeds efficiently in vitro in the absence of additional proteins or high-energy cofactors. Excision of a functional phage genome from a prophage fragment was demonstrated in vitro, demonstrating two-way activity of ϕRSM1 integrase. This is the first example of a small serine recombinase from the resolvase/invertase group that functions in integrative and excisive recombination for filamentous phages. This serine integrase could be used as a tool for several genome engineering applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Askora A, Kawasaki T, Usami S, Fujie M, Yamada T (2009) Host recognition and integration of filamentous phage ϕRSM in the phytopathogen, Ralstonia solanacearum. Virology 384:69–76

    CAS  Article  Google Scholar 

  2. Askora A, Kawasaki T, Fujie M, Yamada T (2011) Resolvase-like serine recombinase mediates integration/excision in the bacteriophage ϕRSM. J Biosci Bioeng 111:109–116

    CAS  Article  Google Scholar 

  3. Ausubel F, Brent R, Kjngston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Short protocols in molecular biology, 3rd edn. John Wiley and Sons Inc, Hoboken

    Google Scholar 

  4. Bibb LA, Hancox MI, Hatfull GF (2005) Integration and excision by the large serine recombinase ϕRv1 integrase. Mol Microbiol 55:1896–1910

    CAS  Article  Google Scholar 

  5. Breüner A, Brøndsted L, Hammer K (2001) Resolvase-like recombination performed by the TP901-1 integrase. Microbiology 147:2051–2063

    Article  Google Scholar 

  6. Fogg PC, Colloms S, Rosser S, Stark M, Smith MC (2014) New applications for phage integrases. J Mol Biol 426:2703–2716

    CAS  Article  Google Scholar 

  7. Ghosh O, Wasil LR, Hatfull GF (2006) Control of phage Bxb1 excision by a novel recombination directory factor. PLoS Biol 4(6):e186

    Article  Google Scholar 

  8. Grindley ND, Lauth MR, Wells RG, Wityk RJ, Salvo JJ, Reed RR (1982) Transposon-mediated site-specific recombination: identification of three binding sites for resolvase at the res sites of gamma delta and Tn3. Cell 30:19–27

    CAS  Article  Google Scholar 

  9. Grindley NDF, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Annu Rev Biochem 75:567–605

    CAS  Article  Google Scholar 

  10. Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335(3):667–678

    CAS  Article  Google Scholar 

  11. Hatfull GF, Grindley NDF (1988) Resolvases and DNA invertases: a family of enzymes active in site-specific recombination. In: Kucherlapati R, Smith G (eds) Genetic recombination. American Society for Microbiology, Washington, pp 357–396

    Google Scholar 

  12. Hay ID, Lithgow T (2019) Filamentous phages: masters of a microbial sharing economy. EMBO Rep 20(6):e47427

    Article  Google Scholar 

  13. Horita M, Tsuchiya K (2002) Causal agent of bacterial wilt disease Ralstonia solanacearum., p. 5–8. In: National Institute of Agrobiological Sciences (ed.). MAFF microorganism genetic resources manual no. 12 National Institute of Agrobiological Sciences, Tsukuba, Japan

  14. Kawasaki T, Nagata S, Fujiwara A, Satsuma H, Fujie M, Usami S, Yamada T (2007) Genomic characterization of the filamentous integrative bacteriophage ϕRSS1 and ϕRSM1, which infect Ralstonia solanacearum. J Bacteriol 189:5792–5802

    CAS  Article  Google Scholar 

  15. Landy A (1989) Dynamic, structural, and regulatory aspects of lambda site specific recombination. Annu Rev Biochem 58:913–949

    CAS  Article  Google Scholar 

  16. Merrick CA, Zhao J, Rosser SJ (2018) Serine integrases: advancing synthetic biology. ACS Synth Biol 7:299–310

    CAS  Article  Google Scholar 

  17. Mizuuchi K (1997) Polynucleotidyl transfer reactions in site-specific DNA recombination. Genes Cells 2:1–12

    CAS  Article  Google Scholar 

  18. Nash HA (1996) Site-specific recombination: integration, excision, resolution and inversion of defined DNA segments. In: Neidhardt FC, CurtissIngraham RJL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella. ASM Press, Washington, pp 2363–2376

    Google Scholar 

  19. Olorunniji FJ, Rosser SJ, Stark WM (2016) Site-specific recombinases: molecular mechanism for the genetic revolution. Biochem J 473:673–684

    CAS  Article  Google Scholar 

  20. Rowland SJ, Stark WM, Boocock MR (2002) Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol 44:607–619

    CAS  Article  Google Scholar 

  21. Sadowski PD (1993) Site-specific genetic recombination: hops, flips, and flops. FASEB J 7:760–767

    CAS  Article  Google Scholar 

  22. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. 3rd (ed.). Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

  23. Sherratt DJ, Arciszewska LK, Blakely G, Colloms S, Grant K, Leslie N, McCulloch R (1995) Site-specific recombination and circular chromosome segregation. Philos Trans R Soc Lond B Biol Sci 347:37–42

    CAS  Article  Google Scholar 

  24. Smith MC, Thorpe HM (2002) Diversity in the serine recombinases. Mol Microbiol 44:299–307

    CAS  Article  Google Scholar 

  25. Stark WM, Sherratt DJ, Boocock MR (1989) Site-specific recombination by Tn3 resolvase: topological changes in the forward and reverse reactions. Cell 58:779–790

    CAS  Article  Google Scholar 

  26. Stark WM, Boocock MR, Sherrat DJ (1992) Catalysis by site-specific recombinases. Trends Genet 8:432–439

    CAS  Article  Google Scholar 

  27. Thorpe HM, Smith MC (1998) In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci USA 95:5505–5510

    CAS  Article  Google Scholar 

  28. Thorpe HM, Wilson SE, Smith MCM (2000) Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol 38:232–241

    CAS  Article  Google Scholar 

  29. Wang X, Tang B, Ye Y, Mao Y, Lei X, Zhao G, Ding X (2017) Bxb1 integrase serves as a highly efficient DNA recombinase in rapid metabolite pathway assembly. Acta Biochim Biophys Sin 49:44–50

    Article  Google Scholar 

  30. Zhang L, Ou X, Zhao G, Ding X (2008) Highly efficient in vitro site-specific recombination system based on Streptomyces phage BT1 integrase. J Bacteriol 190:6392–6397

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Ahmed Askora or Takashi Yamada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Stefan Hohmann.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 95 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Askora, A., Kawasaki, T., Fujie, M. et al. In vitro characterization of the site-specific recombination system based on genus Habenivirus ϕRSM small serine integrase. Mol Genet Genomics (2021). https://doi.org/10.1007/s00438-021-01762-5

Download citation

Keywords

  • Habenivirus
  • ϕRSM-Int
  • In vitro assay
  • Site-specific recombination
  • attP/attB
  • attL/attR