Skip to main content
Log in

The influence of paternal diet on sncRNA-mediated epigenetic inheritance

  • Review
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The risk of developing metabolic diseases is conferred by genetic predisposition from risk genes and by environmental exposures that can manifest in epigenetic changes. The global rise in obesity and type II diabetes has motivated a search for the epigenetic factors underlying these diseases. The possibility of transgenerational inheritance of epigenetic changes raises questions regarding how spermatozoa transmit acquired epigenetic changes that affect the metabolic health of the next generation. The purpose of this review is to describe current key literature concerning small non-coding RNA (sncRNA), specifically (1) the effects of high-fat or low-protein diets on sncRNA presence in spermatozoa; (2) sncRNA transmission from father to offspring; and (3) the functional effects of inherited sncRNA on offspring metabolic phenotype. Current research has identified alterations in the content of sncRNA subtypes, including microRNA (miRNA), Piwi-interacting RNA (piRNA), and transferRNA (tRNA)-derived small non-coding RNA (tsncRNA), in spermatozoa in response to both high-fat diets and low-protein diets. The altered content of spermatozoa sncRNA due to high-fat diets was associated with a changed phenotype in offspring, with offspring displaying insulin resistance, altered body weight, and glucose intolerance. The altered sncRNA content of spermatozoa due to a low-protein diet was associated with altered levels of lipid metabolites in offspring and decreased expression of specific genes starting in two-cell embryos. The current literature suggests that sncRNAs mediate paternal intergenerational epigenetic inheritance and thus has a direct functional importance, as well as possess biomarker potential, for metabolic diseases. Further research is urgently required to identify the specific sncRNAs with the most profound impacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

endo-siRNA:

Endogenous small interfering RNA

HFD:

High-fat diet

LPD:

Low-protein diet

mRNA:

Messenger RNA

miRNA:

microRNA

piRNA:

Piwi-interacting RNA

rRNA:

Ribosomal RNA

rsRNA:

rRNA-derived small RNA

scRNA:

Small cytoplasmic RNA

sdRNA:

SnoRNA-derived small RNA

snRNA:

Small nuclear RNA

sncRNAs:

Small non-coding RNAs

snoRNA:

Small nucleolar RNA

tRNA:

Transfer RNA

tiRNAs:

tRNA halves

tsncRNA:

tRNA-derived small non-coding RNA

tRFs:

tRNA-derived fragments

tsRNA:

Pre-tRNA-derived small RNA

References

  • Aiken CE, Ozanne SE (2014) Transgenerational developmental programming. Hum Reprod Update 20:63–75

    Article  PubMed  Google Scholar 

  • Ajslev TA, Angquist L, Silventoinen K, Baker JL, Sorensen TI (2015) Stable intergenerational associations of childhood overweight during the development of the obesity epidemic. Obesity (Silver Spring) 23:1279–1287

    Article  Google Scholar 

  • Campos EI, Stafford JM, Reinberg D (2014) Epigenetic inheritance: histone bookmarks across generations. Trends Cell Biol 24:664–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94

    Article  CAS  PubMed  Google Scholar 

  • Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E (2009) The use of animal models in the study of diabetes mellitus. In Vivo 23:245–258

    CAS  PubMed  Google Scholar 

  • Chen Q, Yan M, Cao Z, Li X, Zhang Y, Shi J, Feng GH, Peng H, Zhang X, Zhang Y, Qian J, Duan E, Zhai Q, Zhou Q (2016a) Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 351:397–400

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Yan W, Duan E (2016b) Epigenetic inheritance of acquired traits through sperm RNAs and sperm RNA modifications. Nat Rev Genet 17:733–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conine CC, Sun F, Song L, Rivera-Perez JA, Rando OJ (2018) Small RNAs gained during epididymal transit of sperm are essential for embryonic development in mice. Dev Cell 46(4):470–480. https://doi.org/10.1016/j.devcel.2018.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cropley JE, Eaton SA, Aiken A, Young PE, Giannoulatou E, Ho JW, Buckland ME, Keam SP, Hutvagner G, Humphreys DT, Langley KG, Henstridge DC, Martin DI, Febbraio MA, Suter CM (2016) Male-lineage transmission of an acquired metabolic phenotype induced by grand-paternal obesity. Mol Metab 5:699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daraki V, Georgiou V, Papavasiliou S, Chalkiadaki G, Karahaliou M, Koinaki S, Sarri K, Vassilaki M, Kogevinas M, Chatzi L (2015) Metabolic profile in early pregnancy is associated with offspring adiposity at 4 years of age: the Rhea pregnancy cohort Crete, Greece. PLoS One 10:e0126327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13:153–162

    Article  CAS  PubMed  Google Scholar 

  • de Castro Barbosa T, Ingerslev LR, Alm PS, Versteyhe S, Massart J, Rasmussen M, Donkin I, Sjogren R, Mudry JM, Vetterli L, Gupta S, Krook A, Zierath JR, Barres R (2016) High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring. Mol Metab 5:184–197

    Article  CAS  PubMed  Google Scholar 

  • Donkin I, Versteyhe S, Ingerslev LR, Qian K, Mechta M, Nordkap L, Mortensen B, Appel EV, Jorgensen N, Kristiansen VB, Hansen T, Workman CT, Zierath JR, Barres R (2016) Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans. Cell Metab 23:369–378

    Article  CAS  PubMed  Google Scholar 

  • Eaton SA, Jayasooriah N, Buckland ME, Martin DI, Cropley JE, Suter CM (2015) Roll over Weismann: extracellular vesicles in the transgenerational transmission of environmental effects. Epigenomics 7:1165–1171

    Article  CAS  PubMed  Google Scholar 

  • Fullston T, Ohlsson Teague EM, Palmer NO, DeBlasio MJ, Mitchell M, Corbett M, Print CG, Owens JA, Lane M (2013) Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 27:4226–4243

    Article  CAS  PubMed  Google Scholar 

  • Fullston T, Ohlsson-Teague EM, Print CG, Sandeman LY, Lane M (2016) Sperm microRNA content is altered in a mouse model of male obesity, but the same suite of microRNAs are not altered in offspring’s sperm. PLoS One 11:e0166076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gapp K, Jawaid A, Sarkies P, Bohacek J, Pelczar P, Prados J, Farinelli L, Miska E, Mansuy IM (2014) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17:667–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Lopez J, Alonso L, Cardenas DB, Artaza-Alvarez H, Hourcade Jde D, Martinez S, Brieno-Enriquez MA, Del Mazo J (2015) Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization. RNA 21:946–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gold HB, Jung YH, Corces VG (2018) Not just heads and tails: the complexity of the sperm epigenome. J Biol Chem 293(36):13815–13820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandjean V, Fourre S, De Abreu DA, Derieppe MA, Remy JJ, Rassoulzadegan M (2015) RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders. Sci Rep 5:18193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoernes TP, Erlacher MD (2017) Translating the epitranscriptome. Wiley Interdiscip Rev RNA. https://doi.org/10.1002/wrna.1375

    Article  PubMed  Google Scholar 

  • Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17

    Article  CAS  PubMed  Google Scholar 

  • Hosken DJ, Hodgson DJ (2014) Why do sperm carry RNA? Relatedness, conflict, and control. Trends Ecol Evol 29:451–455

    Article  PubMed  Google Scholar 

  • Huypens P, Sass S, Wu M, Dyckhoff D, Tschop M, Theis F, Marschall S, Hrabe de Angelis M, Beckers J (2016) Epigenetic germline inheritance of diet-induced obesity and insulin resistance. Nat Genet 48:497–499

    Article  CAS  PubMed  Google Scholar 

  • Illum LRH, Bak ST, Lund S, Nielsen AL (2018) DNA methylation in epigenetic inheritance of metabolic diseases through the male germ line. J Mol Endocrinol 60:R39–R56

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki YW, Siomi MC, Siomi H (2015) PIWI-Interacting RNA: its biogenesis and functions. Annu Rev Biochem 84:405–433

    Article  CAS  PubMed  Google Scholar 

  • Kiani J, Grandjean V, Liebers R, Tuorto F, Ghanbarian H, Lyko F, Cuzin F, Rassoulzadegan M (2013) RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet 9:e1003498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Kuscu C, Dutta A (2016) Biogenesis and function of transfer RNA-related fragments (tRFs). Trends Biochem Sci 41:679–689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kummitha CM, Kalhan SC, Saidel GM, Lai N (2014) Relating tissue/organ energy expenditure to metabolic fluxes in mouse and human: experimental data integrated with mathematical modeling. Physiol Rep 2(9):e12159. https://doi.org/10.14814/phy2.12159

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin S, Lin Y, Nery JR, Urich MA, Breschi A, Davis CA, Dobin A, Zaleski C, Beer MA, Chapman WC, Gingeras TR, Ecker JR, Snyder MP (2014) Comparison of the transcriptional landscapes between human and mouse tissues. Proc Natl Acad Sci USA 111:17224–17229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marczylo EL, Amoako AA, Konje JC, Gant TW, Marczylo TH (2012) Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics 7:432–439

    Article  CAS  PubMed  Google Scholar 

  • Miller D, Brinkworth M, Iles D (2010) Paternal DNA packaging in spermatozoa: more than the sum of its parts? DNA, histones, protamines and epigenetics. Reproduction 139:287–301

    Article  CAS  PubMed  Google Scholar 

  • Nilsson EE, Sadler-Riggleman I, Skinner MK (2018) Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet 4:dvy016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pembrey M, Saffery R, Bygren LO, Network in Epigenetic Epidemiology, Network in Epigenetic Epidemiology (2014) Human transgenerational responses to early-life experience: potential impact on development, health and biomedical research. J Med Genet 51:563–572

    Article  PubMed  Google Scholar 

  • Peng H, Shi J, Zhang Y, Zhang H, Liao S, Li W, Lei L, Han C, Ning L, Cao Y, Zhou Q, Chen Q, Duan E (2012) A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm. Cell Res 22:1609–1612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radford EJ, Ito M, Shi H, Corish JA, Yamazawa K, Isganaitis E, Seisenberger S, Hore TA, Reik W, Erkek S, Peters A, Patti ME, Ferguson-Smith AC (2014) In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science 345:1255903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rando OJ (2016) Intergenerational transfer of epigenetic information in sperm. Cold Spring Harb Perspect Med 6(5):a22988. https://doi.org/10.1101/cshperspect.a022988

    Article  CAS  Google Scholar 

  • Rando OJ, Simmons RA (2015) I’m eating for two: parental dietary effects on offspring metabolism. Cell 161:93–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rechavi O, Houri-Ze’evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O (2014) Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 158:277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reilly JN, McLaughlin EA, Stanger SJ, Anderson AL, Hutcheon K, Church K, Mihalas BP, Tyagi S, Holt JE, Eamens AL, Nixon B (2016) Characterisation of mouse epididymosomes reveals a complex profile of microRNAs and a potential mechanism for modification of the sperm epigenome. Sci Rep 6:31794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodgers AB, Morgan CP, Leu NA, Bale TL (2015) Transgenerational epigenetic programming via sperm microRNA recapitulates effects of paternal stress. Proc Natl Acad Sci USA 112:13699–13704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rompala GR, Mounier A, Wolfe CM, Lin Q, Lefterov I, Homanics GE (2018) Heavy chronic intermittent ethanol exposure alters small noncoding RNAs in mouse sperm and epididymosomes. Front Genet 9:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Vasquez E, Alata Jimenez N, Vazquez NA, Strobl-Mazzulla PH (2018) Emerging role of dynamic RNA modifications during animal development. Mech Dev. https://doi.org/10.1016/j.mod.2018.04.002

    Article  PubMed  Google Scholar 

  • Schuster A, Skinner MK, Yan W (2016a) Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs. Environ Epigenet 2(1):dvw001. https://doi.org/10.1093/eep/dvw001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster A, Tang C, Xie Y, Ortogero N, Yuan S, Yan W (2016b) SpermBase: a database for sperm-borne RNA contents. Biol Reprod 95:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma U, Conine CC, Shea JM, Boskovic A, Derr AG, Bing XY, Belleannee C, Kucukural A, Serra RW, Sun F, Song L, Carone BR, Ricci EP, Li XZ, Fauquier L, Moore MJ, Sullivan R, Mello CC, Garber M, Rando OJ (2016) Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals. Science 351:391–396

    Article  CAS  PubMed  Google Scholar 

  • Shea JM, Serra RW, Carone BR, Shulha HP, Kucukural A, Ziller MJ, Vallaster MP, Gu H, Tapper AR, Gardner PD, Meissner A, Garber M, Rando OJ (2015) Genetic and epigenetic variation, but not diet, shape the sperm methylome. Dev Cell 35:750–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Short AK, Yeshurun S, Powell R, Perreau VM, Fox A, Kim JH, Pang TY, Hannan AJ (2017) Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety. Transl Psychiatry 7:e1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner MK (2011) Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics 6:838–842

    Article  CAS  PubMed  Google Scholar 

  • Soubry A, Hoyo C, Jirtle RL, Murphy SK (2014) A paternal environmental legacy: evidence for epigenetic inheritance through the male germ line. BioEssays 36:359–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soubry A, Guo L, Huang Z, Hoyo C, Romanus S, Price T, Murphy SK (2016) Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin Epigenet 8:51

    Article  CAS  Google Scholar 

  • Tseng YT, Liao HF, Yu CY, Mo CF, Lin SP (2015) Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells. Reproduction 150:R77–R91

    Article  CAS  PubMed  Google Scholar 

  • Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, Frye M, Helm M, Stoecklin G, Lyko F (2012) RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19:900–905

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Yang CR, Wei YP, Zhao ZA, Hou Y, Schatten H, Sun QY (2014) Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci USA 111:1873–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei JW, Huang K, Yang C, Kang CS (2017) Non-coding RNAs as regulators in epigenetics (review). Oncol Rep 37:3–9

    Article  PubMed  Google Scholar 

  • Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genom Hum Genet 9:233–257

    Article  CAS  Google Scholar 

  • Yuan S, Schuster A, Tang C, Yu T, Ortogero N, Bao J, Zheng H, Yan W (2016) Sperm-borne miRNAs and endo-siRNAs are important for fertilization and preimplantation embryonic development. Development 143:635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Zhang X, Shi J, Tuorto F, Li X, Liu Y, Liebers R, Zhang L, Qu Y, Qian J, Pahima M, Liu Y, Yan M, Cao Z, Lei X, Cao Y, Peng H, Liu S, Wang Y, Zheng H, Woolsey R, Quilici D, Zhai Q, Li L, Zhou T, Yan W, Lyko F, Zhang Y, Zhou Q, Duan E, Chen Q (2018) Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs. Nat Cell Biol 20:535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Liu X, Pu W, Peng Y (2018) tRNA-derived small non-coding RNAs in human disease. Cancer Lett 419:1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Stine Thorhauge Bak was supported by a Ph.D. fellowship from Health, Aarhus University, Denmark.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design was performed by Line Katrine Klastrup (LKK) and Anders Lade Nielsen (ALN). Study analysis and interpretation of data were performed by LKK, Stine Thorhauge Bak (STB) and ALN. Drafting of the manuscript was performed by LKK, STB and ALN. All authors approved the final version of the manuscript. ALN is guarantor for the article and accepts full responsibility for the work, the conduct of the study, and controlled the decision to publish.

Corresponding author

Correspondence to Anders Lade Nielsen.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klastrup, L.K., Bak, S.T. & Nielsen, A.L. The influence of paternal diet on sncRNA-mediated epigenetic inheritance. Mol Genet Genomics 294, 1–11 (2019). https://doi.org/10.1007/s00438-018-1492-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1492-8

Keywords

Navigation