Skip to main content
Log in

Exogenous application of GA3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple (Malus domestica Borkh.)

  • Original Article
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

Although gibberellin (GA) has been reported to control branching, little is known about how GA mediates signals regulating the outgrowth of axillary buds (ABs). In the current study, the effect of the exogenous application of 5.0 mM GA3 on ABs outgrowth on 1-year-old ‘Nagafu No. 2’/T337/M. robusta Rehd. apple trees was investigated and compared to the bud-activating treatments, 5 mM BA or decapitation. Additionally, the expression of genes related to bud-regulating signals and sucrose levels in ABs was examined. Results indicated that GA3 did not promote ABs’ outgrowth, nor down-regulate the expression of branching repressors [MdTCP40, MdTCP33, and MdTCP16 (homologs of BRANCHED1 and BRC2)], which were significantly inhibited by the BA and decapitation treatments. MdSBP12 and MdSBP18, the putative transcriptional activators of these genes, which are expressed at lower levels in BA-treated and decapitated buds, were up-regulated in the GA3 treatment in comparison to the BA treatment. Additionally, GA3 did not up-regulate the expression of CK response- and auxin transport-related genes, which were immediately induced by the BA treatment. In addition, GA3 also up-regulated the expression of several Tre6P biosynthesis genes and reduced sucrose levels in ABs. Sucrose levels, however, were still higher than what was observed in BA-treated buds, indicating that sucrose may not be limiting in GA3-controlled AB outgrowth. Although GA3 promoted cell division, it was not sufficient to induce AB outgrowth. Conclusively, some branching-inhibiting genes and bud-regulating hormones are associated with the inability of GA3 to activate AB outgrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agharkar M, Lomba P, Altpeter F, Zhang H, Kenworthy K, Lange T (2007) Stable expression of AtGA2ox1 in a low-input turfgrass (Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnol J 5:791–801

    CAS  PubMed  Google Scholar 

  • Aguilarmartínez JA, Pozacarrión C, Cubas P (2007) Arabidopsis BRANCHED1 Acts as an integrator of branching signals within axillary buds. Plant Cell 19:458

    Google Scholar 

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr EM (2011) Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. Proc Natl Acad Sci USA 108:20242–20247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Argyros RD, Mathews DE, Chiang YH, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20:2102–2116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029

    CAS  PubMed  Google Scholar 

  • Atay E, Koyuncu F (2013) A new approach for augmenting branching of nursery trees and its comparison with other methods. Sci Hortic 160:345–350

    Google Scholar 

  • Balla J, Kalousek P, Reinöhl V, Friml J, Procházka S (2011) Competitive canalization of PIN-dependent auxin flow from axillary buds controls pea bud outgrowth. Plant J Cell Mol Biol 65:571–577

    CAS  Google Scholar 

  • Bennett T, Sieberer T, Willett B, Booker J, Luschnig C, Leyser O (2006) The Arabidopsis MAX pathway controls shoot branching by regulating auxin transport. Curr Biol 16:553–563

    CAS  PubMed  Google Scholar 

  • Bennett T, Hines G, Leyser O (2014) Canalization: what the flux? Trends Genet 30:41–48

    CAS  PubMed  Google Scholar 

  • Bergmann C, Wegmann K, Frischmuth K, Samson E, Kranz A, Weigelt D, Koll P, Welzel P (1993) Stimulation of Orobanche crenata seed germination by (+)-strigol and structural analogues dependence on constitution and configuration of the germinatio stimulants. J Plant Physiol 142:338–342

    CAS  Google Scholar 

  • Bostan M (2010) Influence of crown formation method on development of the apple trees in the nursery. J Am Soc Hortic Sci 7:1193–1198

    Google Scholar 

  • Boucheron E, Healy JC, Sauvanet A, Rembur J, Noin M, Sekine M, Riou KC, Murray JA, Van OH, Chriqui D (2005) Ectopic expression of Arabidopsis CYCD2 and CYCD3 in tobacco has distinct effects on the structural organization of the shoot apical meristem. J Exp Bot 56:123–134

    CAS  PubMed  Google Scholar 

  • Braun N, Germain ADS, Pillot JP, Boutet-Mercey S, Dalmais M, Antoniadi I, Xin L, Maia-Grondard A, Signor CL, Bouteiller N (2012) The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching. Plant Physiol 158:225–238

    CAS  PubMed  Google Scholar 

  • Brewer PB, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150:482–493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng H, Qin L, Lee S, Fu X, Richards DE, Cao D, Luo D, Harberd NP, Peng J (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055

    CAS  PubMed  Google Scholar 

  • Choubane D, Rabot A, Mortreau E, Legourrierec J, Péron T, Foucher F, Ahcène Y, Pelleschi-Travier S, Leduc N, Hamama L (2012) Photocontrol of bud burst involves gibberellin biosynthesis in Rosa sp. J Plant Physiol 169:1271–1280

    CAS  PubMed  Google Scholar 

  • Crawford S, Shinohara NT, Williamson L, George G, Hepworth J, Muller D, Domagalska MA, Leyser O (2010) Strigolactones enhance competition between shoot branches by dampening auxin transport. Development 137:2905

    CAS  PubMed  Google Scholar 

  • Daviere JM, Wild M, Regnault T, Baumberger N, Eisler H, Genschik P, Achard P (2014) Class I TCP-DELLA interactions in inflorescence shoot apex determine plant height. Curr Biol 24:1923–1928

    CAS  PubMed  Google Scholar 

  • Davière JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    PubMed  Google Scholar 

  • De SGA, Ligerot Y, Dun EA, Pillot JP, Ross JJ, Beveridge CA, Rameau C (2013) Strigolactones stimulate internode elongation independently of gibberellins. Plant Physiol 163:1012–1025

    Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211

    CAS  PubMed  Google Scholar 

  • Du L, Qi S, Ma J, Xing L, Fan S, Zhang S, Li Y, Shen Y, Zhang D, Han M (2017) Identification of TPS family members in apple (Malus × domestica Borkh.) and the effect of sucrose sprays on TPS expression and floral induction. Plant Physiol Biochem 120:10–23

    CAS  PubMed  Google Scholar 

  • Dun EA, Germain ADS, Rameau C, Beveridge CA (2012) Antagonistic action of strigolactone and cytokinin in bud outgrowth control. Plant Physiol 158:487

    CAS  PubMed  Google Scholar 

  • Dun EA, Germain ADS, Rameau C, Beveridge CA (2013) Dynamics of strigolactone function and shoot branching responses in Pisum sativum. Mol Plant 6:128

    CAS  PubMed  Google Scholar 

  • Elfving DC (2010) Plant bioregulators in the deciduous fruit tree nursery. XI Int Symp Plant Bioregul Fruit Prod 884:159–166

    CAS  Google Scholar 

  • Elfving D, Visser D, Henry J (2011) Gibberellins stimulate lateral branch development in young sweet cherry trees in the orchard. Int J Fruit Sci 11:41–54

    Google Scholar 

  • Fan S, Zhang D, Gao C, Zhao M, Wu H, Li Y, Shen Y, Han M (2017) Identification, classification, and expression analysis of GRAS gene family in Malus domestica. Front Physiol 8:253

    PubMed  PubMed Central  Google Scholar 

  • Fichtner F, Barbier FF, Feil R, Watanabe M, Annunziata MG, Chabikwa TG, Hofgen R, Stitt M, Beveridge CA, Lunn JE (2017) Trehalose 6-phosphate is involved in triggering axillary bud outgrowth in garden pea (Pisum sativum L.). Plant J 92:611–623

    CAS  PubMed  Google Scholar 

  • Finlayson SA (2007) Arabidopsis teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot teosinte Branched1. Plant Cell Physiol 48:667

    CAS  PubMed  Google Scholar 

  • Foster T, Kirk C, Jones WT, Allan AC, Espley R, Karunairetnam S, Rakonjac J (2006) Characterisation of the DELLA subfamily in apple (Malus × domestica Borkh.). Tree Genet Genomes 3:187–197

    Google Scholar 

  • François B, Thomas P, Marion L, Maria-Dolores PG, Quentin B, Jakub R, Stéphanie BM, Sylvie C, Remi L, Benoît P (2015) Sucrose is an early modulator of the key hormonal mechanisms controlling bud outgrowth in Rosa hybrida. J Exp Bot 66:2569

    Google Scholar 

  • Gambino G, Perrone I, Gribaudo I (2008) A rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem Anal 19:520–525

    CAS  PubMed  Google Scholar 

  • Ghosh A, Chikara J, Chaudhary DR (2011) Diminution of economic yield as affected by pruning and chemical manipulation of Jatropha curcas L. Biomass Bioenergy 35:1021–1029

    CAS  Google Scholar 

  • Greenboim-Wainberg Y, Weiss D (2005) Cross talk between gibberellin and cytokinin: the Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 17:92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao L, Wang RX, Qian Q, Yan MX, Meng XB, Fu ZM, Yan CY, Jiang B, Zhen S, Li JY (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512

    Google Scholar 

  • Henry C, Rabot A, Laloi M, Mortreau E, Sigogne M, Leduc N, Lemoine R, Sakr S, Vian A, Pelleschitravier S (2011) Regulation of RhSUC2, a sucrose transporter, is correlated with the light control of bud burst in Rosa sp. Plant Cell Environ 34:1776–1789

    CAS  PubMed  Google Scholar 

  • Ho KM, English S, Bell J (1981) The control of the patterned differentiation of vascular tissues. Adv Bot Res 9:151–262

    Google Scholar 

  • Holalu SV, Finlayson SA (2017) The ratio of red light to far red light alters Arabidopsis axillary bud growth and abscisic acid signalling before stem auxin changes. J Exp Bot 68:943–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh H, Ueguchitanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kebrom TH, Finlayson SA (2006) Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kebrom TH, Mullet JE (2016) Transcriptome profiling of tiller buds provides new insights into PhyB regulation of tillering and indeterminate growth in Sorghum. Plant Physiol 170:2232–2250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kebrom TH, Spielmeyer W, Finnegan EJ (2013) Grasses provide new insights into regulation of shoot branching. Trends Plant Sci 18:41–48

    CAS  PubMed  Google Scholar 

  • Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9:1607

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kviklys D (2006) Induction of feathering of apple planting material. Agron Vestis 9:58–63

    Google Scholar 

  • Labuschagné IF, Louw JH, Schmidt K, Sadie A (2003) Selection for increased budbreak in apple. J Am Soc Hortic Sci 128:363–373

    Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703

    CAS  PubMed  Google Scholar 

  • Li C-J, Bangerth F (1999) Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum) plants and its relationship to correlative dominance. Physiol Plant 106:415–420

    CAS  Google Scholar 

  • Li C, Bangerth F (2003) Stimulatory effect of cytokinins and interaction with IAA on the release of lateral buds of pea plants from apical dominance. J Plant Physiol 160:1059–1063

    CAS  PubMed  Google Scholar 

  • Li J, Hou H, Li X, Jiang X, Yin X, Gao H, Zheng Y, Bassett CL, Wang X (2013) Genome-wide identification and analysis of the SBP-box family genes in apple (Malus × domestica Borkh.). Plant Physiol Biochem 70:100

    CAS  PubMed  Google Scholar 

  • Li Y, Zhang D, Zhang L, Zuo X, Fan S, Zhang X, Shalmani A, Han M (2017) Identification and expression analysis of cytokinin response-regulator genes during floral induction in apple (Malus domestica Borkh). Plant Growth Regul:1–10

  • Liu J, Cheng X, Liu P, Sun J (2017) miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat. Plant Physiol 174:1931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lo SF, Yang SY, Chen KT, Hsing YL, Zeevaart JAD, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Yu H, Xiong G, Wang J, Jiao Y, Liu G, Jing Y, Meng X, Hu X, Qian Q, Fu X, Wang Y, Li J (2013) Genome-wide binding analysis of the transcription activator ideal plant architecture1 reveals a complex network regulating rice plant architecture. Plant Cell 25:3743–3759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn EJ, Feil R, Hendriks Janneke HM, Gibon Y, Morcuende R, Osuna D, Scheible W, Carillo P, Hajirezaei MR, Stitt M (2006) Sugar-induced increases in trehalose 6-phosphate are correlated with redox activation of ADP glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marínde lRN, Pfeiffer A, Hill K, Locascio A, Bhalerao RP, Miskolczi P, Grønlund AL, Wanchookohli A, Thomas SG, Bennett MJ (2015) Genome wide binding site analysis reveals transcriptional coactivation of cytokinin-responsive genes by DELLA proteins. Plos Genet 11:e1005337

    Google Scholar 

  • Martin K, Vera M, Richard W, Brendan D (2011) TCP14 and TCP15 affect internode length and leaf shape in Arabidopsis. Plant J Cell Mol Biol 68:147–158

    Google Scholar 

  • Martín-Trillo M, Grandío EG, Serra F, Marcel F, Rodríguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P (2011) Role of tomato BRANCHED1-like genes in the control of shoot branching. Plant J Cell Mol Biol 67:701

    Google Scholar 

  • Mason MG, Ross JJ, Babst BA, Wienclaw BN, Beveridge CA (2014) Sugar demand, not auxin, is the initial regulator of apical dominance. Proc Natl Acad Sci USA 111:6092–6097

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauriat M, Sandberg LG, Moritz T (2011) Proper gibberellin localization in vascular tissue is required to control auxin-dependent leaf development and bud outgrowth in hybrid aspen. Plant J Cell Mol Biol 67:805

    CAS  Google Scholar 

  • Maymon I, Greenboim-Wainberg Y, Sagiv S, Kieber JJ, Moshelion M, Olszewski N, Weiss D (2009) Cytosolic activity of SPINDLY implies the existence of a DELLA-independent gibberellin-response pathway. Plant J Cell Mol Biol 58:979

    CAS  Google Scholar 

  • Minakuchi K, Kameoka H, Yasuno N, Umehara M, Luo L, Kobayashi K, Hanada A, Ueno K, Asami T, Yamaguchi S (2010) FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol 51:1127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moubayidin L, Perilli S, Ioio RD, Mambro RD, Costantino P, Sabatini S (2010) The rate of cell differentiation controls the Arabidopsis root meristem growth phase. Curr Biol Cb 20:1138

    CAS  PubMed  Google Scholar 

  • Muhr M, Prüfer N, Paulat M, Teichmann T (2016) Knockdown of strigolactone biosynthesis genes in Populus affects BRANCHED1 expression and shoot architecture. New Phytol 212:613–626

    CAS  PubMed  Google Scholar 

  • Muller D, Leyser O (2011) Auxin, cytokinin and the control of shoot branching. Ann Bot 107:1203–1212

    PubMed  PubMed Central  Google Scholar 

  • Muller D, Waldie T, Miyawaki K, To JP, Melnyk CW, Kieber JJ, Kakimoto T, Leyser O (2015) Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J 82:874–886

    PubMed  PubMed Central  Google Scholar 

  • Murfet IC, Reid JB, Casey R, Davies DR (1993) Developmentalmutants. In: Casey R, Davies DR (eds) Peas genetics molecular biology and biotechnology Developmental mutants. Peas genetics molecular biology and biotechnology, (Wallingford: CAB), pp 165–216

  • Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park SH (2013) Molecular mechanism of strigolactone perception by DWARF14. Nat Commun 4:2613

    PubMed  Google Scholar 

  • Naor A, Flaishman M, Stern R, Moshe A, Erez A (2003) Temperature effects on dormancy completion of vegetative buds in apple. J Am Soc Hortic Sci Am Soc Hortic Sci 128:636–641

    Google Scholar 

  • Ni J, Gao CC, Chen MS, Pan BZ, Ye KQ, Xu ZF (2015) Gibberellin promotes shoot branching in the perennial woody plant Jatropha curcas. Plant Cell Physiol 56:1655–1666

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas M, Rodríguez-Buey María L, Franco-Zorrilla José M, Cubas P (2015) A recently evolved alternative splice site in the BRANCHED1a gene controls potato plant architecture. Curr Biol 25:1799–1809

    CAS  PubMed  Google Scholar 

  • Niwa M, Daimon Y, Kurotani K, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M (2013) BRANCHED1 interacts with FLOWERING LOCUS T to repress the floral transition of the axillary meristems in Arabidopsis. Plant Cell 25:1228–1242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes C, O’Hara LE, Primavesi LF, Delatte TL, Schluepmann H, Somsen GW, Silva AB, Fevereiro PS, Wingler A, Paul MJ (2013) The trehalose 6-phosphate/SnRK1 signaling pathway primes growth recovery following relief of sink limitation. Plant Physiol 162:1720–1732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Otori K, Tamoi M, Tanabe N, Shigeoka S (2017) Enhancements in sucrose biosynthesis capacity affect shoot branching in Arabidopsis. Biosci Biotechnol Biochem 81:1

    Google Scholar 

  • Patrick JW, Colyvas K (2014) Crop yield components—photoassimilate supply- or utilisation limited-organ development? Funct Plant Biol 41:893

    PubMed  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rabot A, Henry C, Ben BK, Mortreau E, Azri W, Lothier J, Hamama L, Boummaza R, Leduc N, Pelleschi-Travier S (2012) Insight into the role of sugars in bud burst under light in the rose. Plant Cell Physiol 53:1068

    CAS  PubMed  Google Scholar 

  • Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S (2015) Multiple pathways regulate shoot branching. Front Plant Sci 5:741

    PubMed  PubMed Central  Google Scholar 

  • Richter R, Behringer C, Muller IK, Schwechheimer C (2010) The GATA-type transcription factors GNC and GNL/CGA1 repress gibberellin signaling downstream from DELLA proteins and phytochrome-interacting factors. Genes Dev 24:2093–2104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rinne PL, Paul LK, Vahala J, Kangasjarvi J, van der Schoot C (2016) Axillary buds are dwarfed shoots that tightly regulate GA pathway and GA-inducible 1,3-beta-glucanase genes during branching in hybrid aspen. J Exp Bot 67:5975–5991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roef L, Onckelen HV (2010) Cytokinin Regulation of the Cell Division Cycle. In: Davies PJ (ed) Plant Hormones. Springer, Dordrecht

    Google Scholar 

  • Rosa M, Hilal M, González JA, Prado FE (2009) Low-temperature effect on enzyme activities involved in sucrose-starch partitioning in salt-stressed and salt-acclimated cotyledons of quinoa (Chenopodium quinoa Willd.) seedlings. Plant Physiol Biochem 47:300–307

    CAS  PubMed  Google Scholar 

  • Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521

    CAS  PubMed  Google Scholar 

  • Shimizu S, Mori H (1998) Analysis of cycles of dormancy and growth in pea axillary buds based on mRNA accumulation patterns of cell cycle-related genes. Plant Cell Physiol 39:255–262

    CAS  PubMed  Google Scholar 

  • Silverstone AL, Ciampaglio CN, Sun T (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Simons JL, Napoli CA, Janssen BJ, Plummer KM, Snowden KC (2007) Analysis of the decreased apical dominance genes of petunia in the control of axillary branching. Plant Physiol 143:697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner E, Weiss D (2012) The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 24:96–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taniguchi M, Sasaki N, Tsuge T, Aoyama T, Oka A (2007) ARR1 directly activates cytokinin response genes that encode proteins with diverse regulatory functions. Plant Cell Physiol 48:263–277

    CAS  PubMed  Google Scholar 

  • Thimann KV, Skoog F (1934) On the inhibition of bud development and other functions of growth substance in Vicia faba. In: Proceedings of the Royal Society of London series B-containing papers of a biological character, vol 114, pp 317–339

    CAS  Google Scholar 

  • Volz RK, Gibbs HM, Popenoe J (1994) Branch induction on apple nursery trees: effects of growth regulators and defoliation. New Zealand J Crop Hortic Sci 22:277–283

    CAS  Google Scholar 

  • Willige BC, Isono E, Richter R, Zourelidou M, Schwechheimer C (2011) Gibberellin regulates pin-formed abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana. Plant Cell 23:2184–2195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu R, Sun P, Jia F, Lu L, Li Y, Zhang S, Huang J (2014) Genomewide analysis of TCP transcription factor gene family in Malus domestica. J Genet 93:733–746

    CAS  PubMed  Google Scholar 

  • Yanai O, Shani E, Dolezal K, Tarkowski P, Sablowski R, Sandberg G, Samach A, Ori N (2005) Arabidopsis KNOXI Proteins Activate Cytokinin Biosynthesis. Current Biology 15(17):1566–1571

    CAS  PubMed  Google Scholar 

  • Yadav UP, Ivakov A, Feil R, Duan GY, Walther D, Giavalisco P, Piques M, Carillo P, Hubberten HM, Stitt M (2014) The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity and mechanisms of sucrose signalling by Tre6P. J Exp Bot 65:1051

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoneyama K, Xie X, Dai K, Sekimoto H, Sugimoto Y, Takeuchi Y, Yoneyama K (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227:125–132

    CAS  PubMed  Google Scholar 

  • Zawaski C, Busov VB (2014) Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. Plos One 9:e86217–e86217

    PubMed  PubMed Central  Google Scholar 

  • Zeng XF, Zhao DG (2016) Expression of IPT in Asakura-sanshoo (Zanthoxylum piperitum (L.) DC. f. inerme Makino) alters tree architecture, delays leaf senescence, and changes leaf essential oil composition. Plant Mol Biol Report 34:649–658

    CAS  PubMed  Google Scholar 

  • Zhang S, Zhang D, Fan S, Du L, Shen Y, Xing L, Li Y, Ma J, Han M (2016) Effect of exogenous GA3 and its inhibitor paclobutrazol on floral formation, endogenous hormones, and flowering-associated genes in ‘Fuji’ apple (Malus domestica Borkh.). Plant Physiol Biochem 107:178–186

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Apple Industry Technology System of Agriculture Ministry of China (CARS-28); Yangling Subsidiary Center Project of National Apple Improvement Center and Collaborative Innovation of Center Shaanxi Fruit Industry Development (C000088); Chinese postdoctoral project (2015M582713); Innovation project of science and technology plan projects of Shaanxi province (2016TZC-N-11-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyu Han.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest. Ming Tan declares that she has no conflict of interest. Guofang Li declares that he has no conflict of interest. Xiaojie Liu declares that he has no conflict of interest. Fang Cheng declares that she has no conflict of interest. Juanjuan Ma declares that she has no conflict of interest. Caiping Zhao declares that she has no conflict of interest. Dong Zhang declares that he has no conflict of interest. Mingyu Han declares that he has no conflict of interest.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, M., Li, G., Liu, X. et al. Exogenous application of GA3 inactively regulates axillary bud outgrowth by influencing of branching-inhibitors and bud-regulating hormones in apple (Malus domestica Borkh.). Mol Genet Genomics 293, 1547–1563 (2018). https://doi.org/10.1007/s00438-018-1481-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-018-1481-y

Keywords

Navigation