Molecular Genetics and Genomics

, Volume 293, Issue 3, pp 711–723 | Cite as

Identifying potentially common genes between dyslipidemia and osteoporosis using novel analytical approaches

  • Xu Lin
  • Cheng Peng
  • Jonathan Greenbaum
  • Zhang-Fang Li
  • Ke-Hao Wu
  • Zeng-Xin Ao
  • Tong Zhang
  • Jie Shen
  • Hong-Wen Deng
Original Article


Dyslipidemia (DL) is closely related to osteoporosis (OP), while the exact common genetic mechanisms are still largely unknown. We proposed to use novel genetic analysis methods with pleiotropic information to identify potentially novel and/or common genes for the potential shared pathogenesis associated with OP and/or DL. We assessed the pleiotropy between plasma lipid (PL) and femoral neck bone mineral density (FNK BMD). We jointly applied the conditional false discovery rate (cFDR) method and the genetic analysis incorporating pleiotropy and annotation (GPA) method to the summary statistics provided by genome-wide association studies (GWASs) of FNK BMD (n = 49,988) and PL (n = 188,577) to identify potentially novel and/or common genes for BMD/PL. We found strong pleiotropic enrichment between PL and FNK BMD. Two hundred and forty-five PL SNPs were identified as potentially novel SNPs by cFDR and GPA. The corresponding genes were enriched in gene ontology (GO) terms “phospholipid homeostasis” and “chylomicron remnant clearance”. Three SNPs (rs2178950, rs9939318, and rs9368716) might be the pleiotropic ones and the corresponding genes NLRC5 (rs2178950) and TRPS1 (rs9939318) were involved in NF-κB signaling pathway and Wnt signaling pathway as well as inflammation and innate immune processes. Our study validated the pleiotropy between PL and FNK BMD, and corroborated the reliability and high-efficiency of cFDR and GPA methods in further analyses of existing GWASs with summary statistics. We identified potentially common and/or novel genes for PL and/or FNK BMD, which may provide new insight and direction for further research.


Dyslipidemia Osteoporosis Pleiotropy cFDR GPA 



Hong-Wen Deng was partially supported by Grants from the National Institutes of Health [U19AG05537301, R01AR057049, R01AR059781, D43TW009107, P20GM109036, R01MH107354, R01MH104680, R01GM109068], the Edward G. Schlieder Endowment fund to Tulane University. We acknowledged Genetic Factors for Osteoporosis (GEFOS-seq Consortium, and Global Lipids Genetics Consortium (GLGC, for their GWAS summary statistics posted online. We acknowledged Chun-Ping Zeng for his useful suggestions for this study.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

438_2017_1414_MOESM1_ESM.pdf (178 kb)
Supplementary material 1 (PDF 178 KB)
438_2017_1414_MOESM2_ESM.pdf (75 kb)
Supplementary material 2 (PDF 75 KB)


  1. Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR, Kendler KS, O’Donovan MC, Rujescu D, Werge T, Sklar P, Roddey JC, Chen CH, McEvoy L, Desikan RS, Djurovic S, Dale AM (2013) Improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet 9:e1003455CrossRefPubMedPubMedCentralGoogle Scholar
  2. Asselbergs FW, Guo Y, van Iperen EP, Sivapalaratnam S, Tragante V, Lanktree MB, Lange LA, Almoguera B, Appelman YE, Barnard J, Baumert J, Beitelshees AL, Bhangale TR, Chen YD, Gaunt TR, Gong Y, Hopewell JC, Johnson T, Kleber ME, Langaee TY, Li M, Li YR, Liu K, McDonough CW, Meijs MF, Middelberg RP, Musunuru K, Nelson CP, O’Connell JR, Padmanabhan S, Pankow JS, Pankratz N, Rafelt S, Rajagopalan R, Romaine SP, Schork NJ, Shaffer J, Shen H, Smith EN, Tischfield SE, van der Most PJ, van Vliet-Ostaptchouk JV, Verweij N, Volcik KA, Zhang L, Bailey KR, Bailey KM, Bauer F, Boer JM, Braund PS, Burt A, Burton PR, Buxbaum SG, Chen W, Cooper-Dehoff RM, Cupples LA, DeJong JS, Delles C, Duggan D, Fornage M, Furlong CE, Glazer N, Gums JG, Hastie C, Holmes MV, Illig T, Kirkland SA, Kivimaki M, Klein R, Klein BE, Kooperberg C, Kottke-Marchant K, Kumari M, LaCroix AZ, Mallela L, Murugesan G, Ordovas J, Ouwehand WH, Post WS, Saxena R, Scharnagl H, Schreiner PJ, Shah T, Shields DC, Shimbo D, Srinivasan SR, Stolk RP, Swerdlow DI, Taylor HJ, Topol EJ, Toskala E, van Pelt JL, van Setten J, Yusuf S, Whittaker JC, Zwinderman AH, Anand SS, Balmforth AJ, Berenson GS, Bezzina CR et al. (2012) Large-scale gene-centric meta-analysis across 32 studies identifies multiple lipid loci. Am J Hum Genet 91:823–838CrossRefGoogle Scholar
  3. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behav Brain Res 125:279–284CrossRefGoogle Scholar
  4. Benko S, Kovacs EG, Hezel F, Kufer TA (2017) NLRC5 functions beyond MHC I regulation—what do we know so far? Front Immunol 8:150CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bernelot Moens SJ, Verweij SL, Schnitzler JG, Stiekema LC, Bos M, Langsted A, Kuijk C, Bekkering S, Voermans C, Verberne HJ (2017) Remnant cholesterol elicits arterial wall inflammation and a multilevel cellular immune response in humans. Arterioscler Thromb Vasc Biol 37(5):969–975. CrossRefPubMedGoogle Scholar
  6. Cabezas MC, de Bruin TW, Jansen H, Kock LA, Kortlandt W, Erkelens DW (1993) Impaired chylomicron remnant clearance in familial combined hyperlipidemia. Arterioscler Thromb 13:804–814CrossRefGoogle Scholar
  7. Chung D, Yang C, Li C, Gelernter J, Zhao H (2014) GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet 10:e1004787CrossRefPubMedPubMedCentralGoogle Scholar
  8. de Barros GM, Kakehasi AM (2016) Skeletal abnormalities of tricho-rhino-phalangeal syndrome type I. Rev Bras Reumatol Engl Ed 56:86–89Google Scholar
  9. Fantauzzo KA, Christiano AM (2012) Trps1 activates a network of secreted Wnt inhibitors and transcription factors crucial to vibrissa follicle morphogenesis. Development 139:203–214CrossRefGoogle Scholar
  10. Fox KM, Wang L, Gandra SR, Quek RG, Li L, Baser O (2016) Clinical and economic burden associated with cardiovascular events among patients with hyperlipidemia: a retrospective cohort study. BMC Cardiovasc Disord 16:13CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gai Z, Gui T, Muragaki Y (2011) The function of TRPS1 in the development and differentiation of bone, kidney, and hair follicles. Histol Histopathol 26:915–921Google Scholar
  12. Giner-Galvan V, Esteban-Giner MJ, Pallares-Carratala V (2016) Overview of guidelines for the management of dyslipidemia: EU perspectives. Vasc Health Risk Manag 12:357–369CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gotoh M, Mizuno K, Ono Y, Takahashi M (2011) Fluvastatin increases bone mineral density in postmenopausal women. Fukushima J Med Sci 57:19–27CrossRefPubMedGoogle Scholar
  14. Greenbaum J, Wu K, Zhang L, Shen H, Zhang J, Deng HW (2017) Increased detection of genetic loci associated with risk predictors of osteoporotic fracture using a pleiotropic cFDR method. Bone 99:62–68CrossRefPubMedGoogle Scholar
  15. Hajj A, Chedid R, Chouery E, Megarbane A, Gannage-Yared MH (2016) Relationship between vitamin D receptor gene polymorphisms, cardiovascular risk factors and adiponectin in a healthy young population. Pharmacogenomics 17:1675–1686CrossRefPubMedGoogle Scholar
  16. Huang Y, Gao L, Xie X, Tan SC (2014) Epidemiology of dyslipidemia in Chinese adults: meta-analysis of prevalence, awareness, treatment, and control. Popul Health Metr 12:28CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ibrahim N, Mohamed N, Shuid AN (2013) Update on statins: hope for osteoporotic fracture healing treatment. Curr Drug Targets 14:1524–1532CrossRefGoogle Scholar
  18. Jeong TD, Lee W, Choi SE, Kim JS, Kim HK, Bae SJ, Chun S, Min WK (2014) Relationship between serum total cholesterol level and serum biochemical bone turnover markers in healthy pre- and postmenopausal women. Biomed Res Int 2014:398397PubMedPubMedCentralGoogle Scholar
  19. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24:2938–2939CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kim YJ, Go MJ, Hu C, Hong CB, Kim YK, Lee JY, Hwang JY, Oh JH, Kim DJ, Kim NH, Kim S, Hong EJ, Kim JH, Min H, Kim Y, Zhang R, Jia W, Okada Y, Takahashi A, Kubo M, Tanaka T, Kamatani N, Matsuda K, Park T, Oh B, Kimm K, Kang D, Shin C, Cho NH, Kim HL, Han BG, Lee JY, Cho YS (2011) Large-scale genome-wide association studies in East Asians identify new genetic loci influencing metabolic traits. Nat Genet 43:990–995CrossRefPubMedGoogle Scholar
  21. Lim HY, Wang W, Wessells RJ, Ocorr K, Bodmer R (2011) Phospholipid homeostasis regulates lipid metabolism and cardiac function through SREBP signaling in Drosophila. Genes Dev 25:189–200CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mandal CC (2015) High cholesterol deteriorates bone health: new insights into molecular mechanisms. Front Endocrinol (Lausanne) 6:165Google Scholar
  23. Manolagas SC (2014) Wnt signaling and osteoporosis. Maturitas 78:233–237CrossRefPubMedPubMedCentralGoogle Scholar
  24. Maser RE, Lenhard MJ, Sneider MB, Pohlig RT (2015) Osteoprotegerin is a better serum biomarker of coronary artery calcification than osteocalcin in type 2 diabetes. Endocr Pract 21:14–22CrossRefPubMedPubMedCentralGoogle Scholar
  25. Mercado C, DeSimone AK, Odom E, Gillespie C, Ayala C, Loustalot F (2015) Prevalence of cholesterol treatment eligibility and medication use among adults—United States, 2005–2012. MMWR Morb Mortal Wkly Rep 64:1305–1311CrossRefPubMedGoogle Scholar
  26. Murray CJ, Barber RM, Foreman KJ, Abbasoglu OA, Abd-Allah F, Abera SF, Aboyans V, Abraham JP, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NM, Achoki T, Ackerman IN, Ademi Z, Adou AK, Adsuar JC, Afshin A, Agardh EE, Alam SS, Alasfoor D, Albittar MI, Alegretti MA, Alemu ZA, Alfonso-Cristancho R, Alhabib S, Ali R, Alla F, Allebeck P, Almazroa MA, Alsharif U, Alvarez E, Alvis-Guzman N, Amare AT, Ameh EA, Amini H, Ammar W, Anderson HR, Anderson BO, Antonio CA, Anwari P, Arnlov J, Arsic AV, Artaman A, Asghar RJ, Assadi R, Atkins LS, Avila MA, Awuah B, Bachman VF, Badawi A, Bahit MC, Balakrishnan K, Banerjee A, Barker-Collo SL, Barquera S, Barregard L, Barrero LH, Basu A, Basu S, Basulaiman MO, Beardsley J, Bedi N, Beghi E, Bekele T, Bell ML, Benjet C, Bennett DA, Bensenor IM, Benzian H, Bernabe E, Bertozzi-Villa A, Beyene TJ, Bhala N, Bhalla A, Bhutta ZA, Bienhoff K, Bikbov B, Biryukov S, Blore JD, Blosser CD, Blyth FM, Bohensky MA, Bolliger IW, Bora BB, Bornstein NM, Bose D, Boufous S, Bourne RR, Boyers LN, Brainin M, Brayne CE, Brazinova A, Breitborde NJ, Brenner H, Briggs AD, Brooks PM, Brown JC, Brugha TS, Buchbinder R, Buckle GC et al (2015) Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet 386:2145–2191CrossRefPubMedGoogle Scholar
  27. Musani SK, Martin LJ, Woo JG, Olivier M, Gurka MJ, DeBoer MD (2017) Heritability of the severity of the metabolic syndrome in Whites and Blacks in 3 large cohorts. Circ Cardiovasc Genet 10.
  28. Oshiumi H, Matsumoto M, Hatakeyama S, Seya T (2009) Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284:807–817CrossRefGoogle Scholar
  29. Ovsyannikova IG, Dhiman N, Haralambieva IH, Vierkant RA, O’Byrne MM, Jacobson RM, Poland GA (2010) Rubella vaccine-induced cellular immunity: evidence of associations with polymorphisms in the toll-like, vitamin A and D receptors, and innate immune response genes. Hum Genet 127:207–221CrossRefGoogle Scholar
  30. Peng YY, He YH, Chen C, Xu T, Li L, Ni MM, Meng XM, Huang C, Li J (2016) NLRC5 regulates cell proliferation, migration and invasion in hepatocellular carcinoma by targeting the Wnt/beta-catenin signaling pathway. Cancer Lett 376:10–21CrossRefPubMedGoogle Scholar
  31. Peng C, Shen J, Lin X, Su KJ, Greenbaum J, Zhu W, Lou HL, Liu F, Zeng CP, Deng WF, Deng HW (2017) Genetic sharing with coronary artery disease identifies potential novel loci for bone mineral density. Bone 103:70–77CrossRefPubMedGoogle Scholar
  32. Philip S, Cyrus C (2006) Osteoporosis. Lancet 367:2010–2018CrossRefGoogle Scholar
  33. Piscopo DM, Johansen EB, Derynck R (2009) Identification of the GATA factor TRPS1 as a repressor of the osteocalcin promoter. J Biol Chem 284:31690–31703CrossRefPubMedPubMedCentralGoogle Scholar
  34. Porter JL, Bhimji SS (2017) Osteoporosis. StatPearls [Internet]. StatPearls Publishing, Treasure Island, FL. Accessed 20 Oct 2017
  35. Rao LN, Ponnusamy T, Philip S, Mukhopadhyay R, Kakkar VV, Mundkur L (2015) Hypercholesterolemia induced immune response and inflammation on progression of atherosclerosis in Apob(tm2Sgy) Ldlr(tm1Her)/J Mice. Lipids 50:785–797CrossRefGoogle Scholar
  36. Ren R, Chen Z, Zhao X, Sun T, Zhang Y, Chen J, Lu S, Ma W (2016) A possible regulatory link between Twist 1 and PPARgamma gene regulation in 3T3-L1 adipocytes. Lipids Health Dis 15:189CrossRefPubMedPubMedCentralGoogle Scholar
  37. Reppe S, Wang Y, Thompson WK, McEvoy LK, Schork AJ, Zuber V, LeBlanc M, Bettella F, Mills IG, Desikan RS, Djurovic S, Gautvik KM, Dale AM, Andreassen OA (2015) Genetic sharing with cardiovascular disease risk factors and diabetes reveals novel bone mineral density loci. PLoS One 10:e0144531CrossRefPubMedPubMedCentralGoogle Scholar
  38. Richards JB, Zheng HF, Spector TD (2012) Genetics of osteoporosis from genome-wide association studies: advances and challenges. Nat Rev Genet 13:576–588Google Scholar
  39. Schmid JA, Birbach A (2008) IkappaB kinase beta (IKKbeta/IKK2/IKBKB)—a key molecule in signaling to the transcription factor NF-kappaB. Cytokine Growth Factor Rev 19:157–165CrossRefGoogle Scholar
  40. Shaffer JP (1995) Multiple hypothesis testing. Annu Rev Psychol 46(1):561CrossRefGoogle Scholar
  41. Singh M, Singh P, Juneja PK, Singh S, Kaur T (2011) SNP-SNP interactions within APOE gene influence plasma lipids in postmenopausal osteoporosis. Rheumatol Int 31:421–423CrossRefPubMedGoogle Scholar
  42. Smyth DJ, Cooper JD, Bailey R, Field S, Burren O, Smink LJ, Guja C, Ionescu-Tirgoviste C, Widmer B, Dunger DB, Savage DA, Walker NM, Clayton DG, Todd JA (2006) A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat Genet 38:617–619CrossRefPubMedGoogle Scholar
  43. Solt LA, May MJ (2008) The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 42:3–18CrossRefPubMedPubMedCentralGoogle Scholar
  44. Sözen T, Özisik L, Başaran N (2017) An overview and management of osteoporosis. Eur J Rheumatol 4:46CrossRefPubMedGoogle Scholar
  45. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, Johansen CT, Fouchier SW, Isaacs A, Peloso GM, Barbalic M, Ricketts SL, Bis JC, Aulchenko YS, Thorleifsson G, Feitosa MF, Chambers J, Orho-Melander M, Melander O, Johnson T, Li X, Guo X, Li M, Shin CY, Jin GM, Jin KY, Lee JY, Park T, Kim K, Sim X, Twee-Hee OR, Croteau-Chonka DC, Lange LA, Smith JD, Song K, Hua ZJ, Yuan X, Luan J, Lamina C, Ziegler A, Zhang W, Zee RY, Wright AF, Witteman JC, Wilson JF, Willemsen G, Wichmann HE, Whitfield JB, Waterworth DM, Wareham NJ, Waeber G, Vollenweider P, Voight BF, Vitart V, Uitterlinden AG, Uda M, Tuomilehto J, Thompson JR, Tanaka T, Surakka I, Stringham HM, Spector TD, Soranzo N, Smit JH, Sinisalo J, Silander K, Sijbrands EJ, Scuteri A, Scott J, Schlessinger D, Sanna S, Salomaa V, Saharinen J, Sabatti C, Ruokonen A, Rudan I, Rose LM, Roberts R, Rieder M, Psaty BM, Pramstaller PP, Pichler I, Perola M, Penninx BW, Pedersen NL, Pattaro C, Parker AN, Pare G, Oostra BA, O’Donnell CJ, Nieminen MS, Nickerson DA, Montgomery GW, Meitinger T, McPherson R, McCarthy MI et al. (2010) Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466:707–713CrossRefGoogle Scholar
  46. Videman T, Levalahti E, Battie MC, Simonen R, Vanninen E, Kaprio J (2007) Heritability of BMD of femoral neck and lumbar spine: a multivariate twin study of Finnish men. J Bone Miner Res 22:1455–1462CrossRefPubMedGoogle Scholar
  47. Wang Y, Tao Y, Hyman ME, Li J, Chen Y (2009) Osteoporosis in China. Osteoporos Int 20:1651–1662CrossRefPubMedGoogle Scholar
  48. Willer CJ, Schmidt EM, Sengupta S, Peloso GM, Gustafsson S, Kanoni S, Ganna A, Chen J, Buchkovich ML, Mora S, Beckmann JS, Bragg-Gresham JL, Chang HY, Demirkan A, Den Hertog HM, Do R, Donnelly LA, Ehret GB, Esko T, Feitosa MF, Ferreira T, Fischer K, Fontanillas P, Fraser RM, Freitag DF, Gurdasani D, Heikkila K, Hypponen E, Isaacs A, Jackson AU, Johansson A, Johnson T, Kaakinen M, Kettunen J, Kleber ME, Li X, Luan J, Lyytikainen LP, Magnusson PK, Mangino M, Mihailov E, Montasser ME, Muller-Nurasyid M, Nolte IM, O’Connell JR, Palmer CD, Perola M, Petersen AK, Sanna S, Saxena R, Service SK, Shah S, Shungin D, Sidore C, Song C, Strawbridge RJ, Surakka I, Tanaka T, Teslovich TM, Thorleifsson G, Van den Herik EG, Voight BF, Volcik KA, Waite LL, Wong A, Wu Y, Zhang W, Absher D, Asiki G, Barroso I, Been LF, Bolton JL, Bonnycastle LL, Brambilla P, Burnett MS, Cesana G, Dimitriou M, Doney AS, Doring A, Elliott P, Epstein SE, Eyjolfsson GI, Gigante B, Goodarzi MO, Grallert H, Gravito ML, Groves CJ, Hallmans G, Hartikainen AL, Hayward C, Hernandez D, Hicks AA, Holm H, Hung YJ, Illig T, Jones MR, Kaleebu P, Kastelein JJ, Khaw KT, Kim E et al (2013) Discovery and refinement of loci associated with lipid levels. Nat Genet 45:1274–1283CrossRefPubMedPubMedCentralGoogle Scholar
  49. Willson T, Nelson SD, Newbold J, Nelson RE, LaFleur J (2015) The clinical epidemiology of male osteoporosis: a review of the recent literature. Clin Epidemiol 7:65–76PubMedPubMedCentralGoogle Scholar
  50. Wong SK, Chin KY, Suhaimi FH, Ahmad F, Ima-Nirwana S (2016) The relationship between metabolic syndrome and osteoporosis: a review. Nutrients 8.
  51. Zeng CP, Chen YC, Lin X, Greenbaum J, Chen YP, Peng C, Wang XF, Zhou R, Deng WM, Shen J, Deng HW (2016) Increased identification of novel variants in type 2 diabetes, birth weight and their pleiotropic loci. J DiabetesGoogle Scholar
  52. Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello-Diez A, Leo PJ, Dahia CL, Park-Min KH, Tobias JH, Kooperberg C, Kleinman A, Styrkarsdottir U, Liu CT, Uggla C, Evans DS, Nielson CM, Walter K, Pettersson-Kymmer U, McCarthy S, Eriksson J, Kwan T, Jhamai M, Trajanoska K, Memari Y, Min J, Huang J, Danecek P, Wilmot B, Li R, Chou WC, Mokry LE, Moayyeri A, Claussnitzer M, Cheng CH, Cheung W, Medina-Gomez C, Ge B, Chen SH, Choi K, Oei L, Fraser J, Kraaij R, Hibbs MA, Gregson CL, Paquette D, Hofman A, Wibom C, Tranah GJ, Marshall M, Gardiner BB, Cremin K, Auer P, Hsu L, Ring S, Tung JY, Thorleifsson G, Enneman AW, van Schoor NM, de Groot LC, van der Velde N, Melin B, Kemp JP, Christiansen C, Sayers A, Zhou Y, Calderari S, van Rooij J, Carlson C, Peters U, Berlivet S, Dostie J, Uitterlinden AG, Williams SR, Farber C, Grinberg D, LaCroix AZ, Haessler J, Chasman DI, Giulianini F, Rose LM, Ridker PM, Eisman JA, Nguyen TV, Center JR, Nogues X, Garcia-Giralt N, Launer LL, Gudnason V, Mellstrom D, Vandenput L, Amin N, van Duijn CM, Karlsson MK, Ljunggren O, Svensson O, Hallmans G, Rousseau F, Giroux S, Bussiere J, Arp PP et al (2015) Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526:112–117CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xu Lin
    • 1
  • Cheng Peng
    • 2
  • Jonathan Greenbaum
    • 3
  • Zhang-Fang Li
    • 4
  • Ke-Hao Wu
    • 3
  • Zeng-Xin Ao
    • 1
  • Tong Zhang
    • 4
  • Jie Shen
    • 4
  • Hong-Wen Deng
    • 3
    • 5
  1. 1.Southern Medical UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People’s HospitalThe Second Affiliated Hospital of South China University of TechnologyGuangzhouPeople’s Republic of China
  3. 3.Center for Bioinformatics and Genomics, Department of Global Statistics and Data Science, School of Public Health and Tropical MedicineTulane UniversityNew OrleansUSA
  4. 4.Department of Endocrinology and MetabolismThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouPeople’s Republic of China
  5. 5.School of Basic Medical SciencesCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations