Skip to main content
Log in

Characterization of SBEIIa homoeologous genes in bread wheat

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

To elucidate some of the molecular mechanisms involved in genome differentiation and evolution of cultivated wheats, we compared orthologous genes encoding starch branching enzyme IIa (SBEIIa). Bread wheat is an allohexaploid species comprising the three genomes A, B and D, each of which contributes a copy of the SBEIIa gene, involved in starch biosynthesis and known to control important quality traits related to technological and nutritional value of wheat-based food products. Alignment of the nucleotide sequences of these three genes revealed variation, both at the level of single nucleotides and indels. Multiple transposon elements were identified in the intragenic regions, some of which appear to have inserted before the divergence of the wheat diploid genomes. The B genome homoeologue was the most divergent of the three genes. Two MITE transposon insertions were detected within the intronic sequence of SBEIIa-B and two other transposons within SBEIIa-D. The presence/absence of these transposons in a panel of diploid and polyploid Triticum and Aegilops species provided some insights into the phylogeny of wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bureau TE, Wessler SR (1994) Stowaway: a new family of inverted-repeat elements associated with genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6:907–916

    Article  PubMed  CAS  Google Scholar 

  • Cantrell MA, Filanoski BJ, Ingermann AR, Olsson K, DiLuglio N, Lister Z, Wichman HA (2001) An ancient retrovirus-like element contains hot spots for SINE insertion. Genetics 158:769–777

    PubMed  CAS  Google Scholar 

  • Chalupska D, Lee HY, Faris JD, Evrard A, Chalhoub B, Haselkorn R, Gornicki P (2008) Acc homoeoloci and the evolution of wheat genomes. Proc Natl Acad Sci USA 105:9691–9696

    Google Scholar 

  • Dvorák J, Zhang HB (1990) Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. Proc Natl Acad Sci USA 87:9640–9644

    Google Scholar 

  • Dvorák J, Luo MC, Yang ZL (1998) Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics 148:423–434

    PubMed  Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147(3):1381–1387

    PubMed  CAS  Google Scholar 

  • Feuillet C, Penger A, Gellner K, Mast A, Keller B (2001) Molecular evolution of receptor-like kinase genes in hexaploid wheat. Independent evolution of orthologs after polyploidization and mechanisms of local rearrangements at paralogous loci. Plant Physiol 125(3):1304–1313

    Article  PubMed  CAS  Google Scholar 

  • Furuta Y, Tanaka M (1970) Experimental introgression in natural tetraploid Aegilops species. Jpn J Genet 45:129–145

    Article  Google Scholar 

  • Hu J, Reddy VS, Wessler SR (2000) The rice R gene family: two distinct subfamilies containing several miniature inverted-repeat transposable elements. Plant Mol Biol 42:667–678

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su XJ, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Google Scholar 

  • Jesperson HM, MacGregor AE, Henrissat B, Sierks MR, Svensson B (1993) Starch- and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (α/β)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J Protein Chem 12:791–805

    Article  Google Scholar 

  • Jiang N, Wessler SR (2001) Insertion preference of maize and rice miniature inverted repeat transposable elements as revealed by the analysis of nested elements. Plant Cell 13:2553–2564

    Article  PubMed  CAS  Google Scholar 

  • Kilian B, Ozkan H, Deusch O, Effgen S, Brandolini A, Kohl J et al (2007) Independent wheat B and G genome origins in outcrossing Aegilops progenitor haplotypes. Mol Biol Evol 24(1):217–227

    Article  PubMed  CAS  Google Scholar 

  • Kong XY, Gu YQ, You FM, Dubcovsky J, Anderson OD (2004) Dynamics of the evolution of orthologous and paralogous portions of a complex locus region in two genomes of allopolyploid wheat. Plant Mol Biol 54:55–69

    Article  PubMed  CAS  Google Scholar 

  • Konovalov FA, Shaturova AS, Kudryavtsev AM (2008) The sequence polymorphism of SBEIIa gene in wheat. In: Appeals R, Eastwood R, Lagudah E, Landridge P, Mackay M, McIntyre L, Sharp P (eds) Proc 11th Int Wheat Genet Symp pp 418–420

  • Krattinger SG, Lagudah ES, Wicker T, Risk JM, Ashton AR, Selter LL, Matsumoto T, Keller B (2011) Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant J 65:392–403

    Article  PubMed  CAS  Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607–613

    Article  Google Scholar 

  • Morell MK, Blennow A, Hashemi BK, Samuel MS (1997) Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperms. Plant Physiol 113:201–208

    Article  PubMed  CAS  Google Scholar 

  • Morimoto R, Kosugi T, Nakamura C, Takumi S (2005) Intragenic diversity and functional conservation of the three homoeologous loci of the KN1-type homeobox gene Wknox1 in common wheat. Plant Mol Biol 57:907–924

    Article  PubMed  CAS  Google Scholar 

  • Nair R, Baga M, Scoles GJ, Kartha KCR, Chibbar RN (1997) Isolation, characterization and expression analysis of a starch branching enzyme II cDNA from wheat. Plant Sci 122:153–163

    Article  CAS  Google Scholar 

  • Nakamura I, Rai B, Takahashi H, Kato K, Sato Y, Komatsuda T (2009) Aegilops section Sitopsis species contains the introgressive PolA1 gene with a closer relationship to that of Hordeum than TriticumAegilops species. Breeding Sci 59:602–610

    Article  CAS  Google Scholar 

  • Ning SZ, Chen QJ, Yuan ZW, Zhang LQ, Yan ZH, Zheng YL, Liu DC (2009) Characterization of WAP2 gene in Aegilops tauschii and comparison with homoeologous loci in wheat. J Syst Evol 47:543–551

    Article  Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-induced rapid genome evolution in the wheat (AegilopsTriticum) group. Plant Cell 13:1735–1747

    Article  PubMed  CAS  Google Scholar 

  • Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A B and D genomes of common wheat (Triticum aestivum). Mol Phylogenet Evol 39:70–82

    Article  PubMed  CAS  Google Scholar 

  • Ragupathy R, Naeem H, Reimer EA, Lukow OM, Sapirstein HD, Cloutier S (2008) Evolutionary origin of the segmental duplication encompassing the wheat GLU-B1 locus encoding the overexpressed Bx7 (Bx7OE) high molecular weight glutenin subunit. Theor Appl Genet 116:283–296

    Article  PubMed  CAS  Google Scholar 

  • Rahman S, Regina A, Li Z, Mukai Y, Yamamoto M, Kosar-Hashemi B, Abrahams S, Morell MK (2001) Comparison of starch-branching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme IIa from the wheat D genome donor Aegilops tauschii. Plant Physiol 125:1314–1324

    Article  PubMed  CAS  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li ZY, Rahman S, Morell M (2006) High amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci USA 103:3546–3551

    Google Scholar 

  • Regina A, Kosar-Hashemi B, Ling S, Li Z, Rahman S, Morell M (2010) Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J Exp Bot 61:1469–1482

    Article  PubMed  CAS  Google Scholar 

  • Riley R, Unrau J, Chapman V (1958) Evidence on the origin of the B genome of wheat. J Hered 49:91–98

    Google Scholar 

  • Sabot F, Guyot R, Wicker T, Chantret N, Laubin B, Chalhoub B, Leroy P, Sourdille P, Bernard M (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol Genet Gen 274:119–130

    CAS  Google Scholar 

  • Salse J, Chagué V, Bolot S, Magdelenat G, Huneau C, Pont C, Belcram H, Couloux A, Gardais S, Evrard A, Segurens B, Charles M, Ravel C, Samain S, Charmet G, Boudet N, Chalhoub B (2008) New insights into the origin of the B genome of hexaploid wheat: Evolutionary relationships at the SPA genomic region with the S genome of the diploid relative Aegilops speltoides. BMC Genomics 9:555

    Article  PubMed  Google Scholar 

  • Sanmiguel PJ, Ramakrishna W, Bennetzen JL, Busso CS, Dubcovsky J (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5Am. Funct Integr Genomics 2:70–80

    Article  PubMed  CAS  Google Scholar 

  • Sestili F, Janni M, Doherty A, Botticella E, D’Ovidio R, Masci S, Jones HC, Lafiandra D (2010) Increasing the amylose content of durum wheat through silencing of the SBEIIa genes. BMC Plant Biol 10:144

    Article  PubMed  Google Scholar 

  • Sharma S, Sreenivasulu N, Harshavardhan VT, Seiler C, Sharma S, Khalil ZN et al (2010) Delineating the structural, functional and evolutionary relationships of sucrose phosphate synthase gene family II in wheat and related grasses. BMC Plant Biol 10:134–145

    Article  PubMed  Google Scholar 

  • Shitsukawa N, Tahira C, Kassai K, Hirabayashi C, Shimizu T, Takumi S, Mochida K, Kawaura K, Ogihara Y, Murai K (2007) Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat. Plant Cell 19:1723–1737

    Article  PubMed  CAS  Google Scholar 

  • Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Austral Syst Bot 17:145–170

    Article  CAS  Google Scholar 

  • Tai TH, Tanksley SD (1990) A rapid and inexpensive method for isolation of total DNA from dehydrated plant tissue. Plant Mol Biol Rep 8:297–303

    Article  Google Scholar 

  • Weissmann S, Feldman M, Gressel J (2005) Sequence evidence for sporadic intergeneric DNA introgression from wheat into a wild Aegilops species. Mol Biol Evol 22:2055–2062

    Article  PubMed  CAS  Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Stein N, Albar L, Feuillet C, Schlagenhauf E, Keller B (2001) Analysis of a contiguous 211 kb sequence in diploid wheat (Triticum monococcum L.) reveals multiple mechanisms of genome evolution. Plant J 26:307–316

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Yahiaoui N, Guyot R, Schlagenhauf E, Liu ZD, Dubcovsky J, Keller B (2003) Rapid genome divergence at orthologous low molecular weight glutenin loci of the A and Am genomes of wheat. Plant Cell 15:1186–1197

    Article  PubMed  CAS  Google Scholar 

  • Zohary D, Feldman M (1962) Hybridization between amphidiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16:44–46

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lafiandra.

Additional information

Communicated by S. Hohmann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Supplementary material 2 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botticella, E., Sestili, F. & Lafiandra, D. Characterization of SBEIIa homoeologous genes in bread wheat. Mol Genet Genomics 287, 515–524 (2012). https://doi.org/10.1007/s00438-012-0694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-012-0694-8

Keywords

Navigation