Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.)

Abstract

The origin of rice domestication has been the subject of debate for several decades. We have compared the transpositional history of 110 LTR retrotransposons in the genomes of two rice varieties, Nipponbare (Japonica type) and 93-11 (Indica type) whose complete sequences have recently been released. Using a genomic paleontology approach, we estimate that these two genomes diverged from one another at least 200,000 years ago, i.e., at a time which is clearly older than the date of domestication of the crop (10,000 years ago, during the late Neolithic). In addition, we complement and confirm this first in silico analysis with a survey of insertion polymorphisms in a wide range of traditional rice varieties of both Indica and Japonica types. These experimental data provide additional evidence for the proposal that Indica and Japonica rice arose from two independent domestication events in Asia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2a, b

References

  1. Audley-Charles MG, Hurley AM, Smith AG (1981) Continental movements in the mesozoic and cenozoic. In: Whitmore TC (ed) Wallace’s line and plate tectonics. Clarendon Press, Oxford, UK, pp 9–23

  2. Blair MW, Panaud O, McCouch SR (1999) Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.) Theor Appl Genet 98:780–782

    Google Scholar 

  3. Chang TT (1976) The origin, evolution, cultivation, dissemination and diversification of Asian and African rices. Euphytica 25:435–485

    Google Scholar 

  4. Chen B (1999) Origin of 8000-year-old cultivated rice in Henan’s Jia Lake site. Agric Archaeol 1:55–57

    Google Scholar 

  5. Cheng C, Motohashi R, Tsuchimoto S, Fukuta Y, Ohtsubo H, Ohtsubo E (2003) Polyphyletic origin of cultivated rice: based on the interspersion pattern of SINEs. Mol Biol Evol 20:67–75

    Article  CAS  PubMed  Google Scholar 

  6. Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  CAS  PubMed  Google Scholar 

  7. Flavell AJ, Knox MR, Pearce SR, Ellis THN (1998) Retrotransposon-based insertion polymorphisms (RBIP) for high throughput marker analysis. Plant J 16:643–50

    Article  CAS  PubMed  Google Scholar 

  8. Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    Article  CAS  PubMed  Google Scholar 

  9. Glaszmann JC (1987) Isozymes and classification of Asian rice varieties. Theor Appl Genet 74:21–30

    Google Scholar 

  10. Jiang N, Bao Z, Temnykh S, Cheng Z, Jiang J, Wing RA, McCouch SR, Wessler SR (2002) A recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics 161:1293–1305

    CAS  PubMed  Google Scholar 

  11. Kato S, Kosaka H, Hara S (1928) On the affinity of the cultivated varieties of rice plants, Oryza sativa L. Bull Sci Fac Agric Kyushu Univ, Fukuoka, Japan 3:132

  12. Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  13. Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  CAS  PubMed  Google Scholar 

  14. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    CAS  PubMed  Google Scholar 

  15. Kumekawa N, Ohtsubo H, Horiuchi T, Ohtsubo E (1999) Identification and characterization of novel retrotransposons of the gypsy type in rice. Mol Gen Genet 260:593–602

    Article  CAS  PubMed  Google Scholar 

  16. Ma J, Devos KM, Bennetzen JL (2004) Analyses of LTR-retrotransposon structures reveal recent and rapid genomic DNA loss in rice. Genome Res 14:860–869

    Article  CAS  PubMed  Google Scholar 

  17. Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  18. Oka HI, Chang TT (1962) Rice varieties intermediate between wild and cultivated forms and the origin of the Japonica type. Bot Bull Acad Sinica 3:109–131

    Google Scholar 

  19. Oka H, Morishima H (1997) Wild and cultivated rice. In: Matsuo T, Futsuhara Y, Kikushi F, Yamaguchi H (eds) Science of the rice plant (vol 3: Genetics). Nobunkyo, Tokyo, pp 88–111

  20. Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    Article  CAS  PubMed  Google Scholar 

  21. Panaud O, Vitte C, Hivert J, Muzlak S, Talag J, Brar DS, Sarr A (2002) Characterization of transposable elements in the genome of rice (Oryza sativa L.) using Representational Difference Analysis. Mol Genet Genomics 268:113–121

    Article  CAS  PubMed  Google Scholar 

  22. Petrov D, Lozovskaya E, Hartl D (1996) High intrinsic rate of DNA loss in Drosophila. Nature 384:346–349

    Article  CAS  PubMed  Google Scholar 

  23. SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL (1998) The paleontology of intergene retrotransposons of maize. Nat Genet 20:43–45

    Article  CAS  PubMed  Google Scholar 

  24. Second G (1982) Origin of the genetic diversity of cultivated rice (Oryza spp.): study of the polymorphism scored at 40 isozyme loci. Jpn J Genet 57:25–57

    Google Scholar 

  25. Wang ZY, Tanksley SD (1989) Restriction fragment length polymorphism in Oryza sativa L.. Genome 32:1113–1118

    CAS  Google Scholar 

  26. Yu J, et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. Indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank A. Frary for her helpful comments on the manuscript and S. Yanagihara for his valuable help in choosing the traditional Japonica varieties used for the analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to O. Panaud.

Additional information

Communicated by M.-A. Grandbastien

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vitte, C., Ishii, T., Lamy, F. et al. Genomic paleontology provides evidence for two distinct origins of Asian rice (Oryza sativa L.). Mol Genet Genomics 272, 504–511 (2004). https://doi.org/10.1007/s00438-004-1069-6

Download citation

Keywords

  • LTR-retrotransposons
  • Rice
  • Domestication
  • Indica/Japonica
  • Retrotransposon-Based Insertion Polymorphism (RBIP)