Investigation of circular RNAs in an ectoparasitic mite Varroa destructor (Acarina: Varroidae) of the honey bee

Abstract

Circular RNAs (circRNAs) are a large class of non-protein-coding transcripts that are involved in a diverse spectrum of regulatory mechanisms across a broad range of biological processes. To date, however, few studies on circRNAs have investigated their role in the biology of invertebrate parasites. The ectoparasitic mite Varroa destructor is perceived as the principal biotic threat towards global honey bee health. This parasite cannot be sustainably controlled partially due to the lack of knowledge about its basic molecular biology. In this paper, we unveil the circRNA profile of V. destructor for the first time and report the sources, distribution, and features of the identified circRNAs. Exonic, intronic, exon-intron, and intergenic circRNAs were discovered and exon-intron circRNAs were the most abundant within the largest spliced length. Three hundred and eighty-six (8.3%) circRNAs were predicted to possess translational potential. Eleven circRNAs, derived from six parental genes, exhibited strong bonds with miRNAs as sponges, suggesting an efficient post-transcriptional regulation. GO term and KEGG pathway enrichment analyses of the parental genes of the identified circRNAs showed that these non-coding RNAs were mainly engaged in protein processing, signal transduction, and various metabolism processes. To our knowledge, this is the first catalog of a circRNA profile of parasitiformes species, which reveals the prevalence of circRNAs in the parasite and provides biological insights for future genetic studies on this ubiquitous parasitic mite.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Alaux C, Dantec C, Parrinello H, Le Conte Y (2011) Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees. BMC Genomics 12:496

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N, Kadener S (2014) CircRNA biogenesis competes with pre-mRNA splicing. Mol Cell 56:55–66

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Chen LL (2016) The biogenesis and emerging roles of circular RNAs. Nat Rev Mol Cell Biol 17:205–211

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Chen X, Shi W (2020) Genome-wide characterization of coding and non-coding RNAs in the ovary of honeybee workers and queens. Apidologie 51:777–792. https://doi.org/10.1007/s13592-020-00760-7

    CAS  Article  Google Scholar 

  5. Chen G, Cui J, Wang L, Zhu Y, Lu Z, Jin B (2017) Genome-wide identification of circular RNAs in Arabidopsis thaliana. Front Plant Sci 8:1678

    PubMed  PubMed Central  Article  Google Scholar 

  6. Chen X, Shi W, Chen C (2019) Differential circular RNAs expression in ovary during oviposition in honey bees. Genomics 111:598–606

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Chen D, Chen H, Du Y, Zhu Z, Guo R (2020) Systematic identification of circular RNAs and corresponding regulatory networks unveil their potential roles in the midguts of eastern honeybee workers. Appl Microbiol Biotechnol 104:257–276

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2003) MicroRNA targets in Drosophila. Genome Biol 5:R1

    PubMed  PubMed Central  Article  Google Scholar 

  9. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12:861–874

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer EL, Tate J, Punta M (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. Gao Y, Wang J, Zheng Y, Zhang J, Chen S, Zhao F (2016) Comprehensive identification of internal structure and alternative splicing events in circular RNAs. Nat Commun 7:1–13

    Google Scholar 

  12. Granados-Riveron JT, Aquino-Jarquin G (2016) The complexity of the translation ability of circRNAs. Biochim Biophys Acta 1859:1245–1251

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. Guo JU, Agarwal V, Guo H, Bartel DP (2014) Expanded identification and characterization of mammalian circular RNAs. Genome Biol 15:409

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Guo R, Chen D, Chen H, Fu Z, Xiong C, Hou C, Zheng Y, Guo Y, Wang H, Du Y, Diao Q (2018a) Systematic investigation of circular RNAs in Ascosphaera apis, a fungal pathogen of honeybee larvae. Gene 678:17–22

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Guo R, Chen D, Chen H, Xiong C, Zheng Y, Hou C, Du Y, Geng S, Wang H, Zhou D, Guo Y (2018b) Genome-wide identification of circular RNAs in fungal parasite Nosema ceranae. Curr Microbiol 75:1655–1660

    CAS  PubMed  Article  Google Scholar 

  16. Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. Hassler EE, Cazier JA, Hopkins B, Wilkes JT, Rünzel M (2020) A century of discovery: mining 100 years of honey bee research. J Apic Res:1–10. https://doi.org/10.1080/00218839.2020.1794303

  18. Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453–461

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141–157

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    PubMed  PubMed Central  Article  Google Scholar 

  22. Kong S, Tao M, Shen X, Ju S (2020) Translatable circRNAs and lncRNAs: driving mechanisms and functions of their translation products. Cancer Lett 483:59–65

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Kraus B, Page RE (1995) Effect of Varroa jacobsoni (Mesostigmata: Varroidae) on feral Apis mellifera (Hymenoptera: Apidae) in California. Environ Entomol 24:1473–1480

    Article  Google Scholar 

  24. Le Conte Y, Ellis M, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie 41:353–363

    Article  Google Scholar 

  25. Le Conte Y, Alaux C, Martin JF, Harbo JR, Harris JW, Dantec C, Séverac D, Cros-Arteil S, Navajas M (2011) Social immunity in honeybees (Apis mellifera): transcriptome analysis of varroa-hygienic behaviour. Insect Mol Biol 20:399–408

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  26. Lei M, Zheng G, Ning Q, Zheng J, Dong D (2020) Translation and functional roles of circular RNAs in human cancer. Mol Cancer 19:30

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Shan G (2015) Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 22:256–264

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  29. Li J, Ma M, Yang X, Zhang M, Luo J, Zhou H, Huang N, Xiao F, Lai B, Lv W, Zhang N (2020) Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol Cancer 19:142

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Lin Z, Liu Y, Chen X, Han C, Wang W, Ke Y, Su X, Li Y, Chen H, Xu H, Chen G, Ji T (2020) Genome-wide identification of long non-coding RNAs in the gravid ectoparasite Varroa destructor. Front Genet 11:575680

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Lu T, Cui L, Zhou Y, Zhu C, Fan D, Gong H, Zhao Q, Zhou CC, Zhao Y, Lu DF, Luo JH, Wang YC, Tian Q, Feng Q, Huang T, Han B (2015) Transcriptome-wide investigation of circular RNAs in rice. RNA 21:2076–2087

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, Nikaido S, Schroeder DC (2012) Global honey bee viral landscape altered by a parasitic mite. Science 336:1304–1306

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Meng S, Zhou H, Feng Z, Xu Z, Tang Y, Li P, Wu M (2017a) CircRNA: functions and properties of a novel potential biomarker for cancer. Mol Cancer 16:1–8

    CAS  Article  Google Scholar 

  35. Meng X, Li X, Zhang P, Wang J, Zhou Y, Chen M (2017b) Circular RNA: an emerging key player in RNA world. Brief Bioinform 18:547–557

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mondet F, Alaux C, Severac D, Rohmer M, Mercer AR, Le Conte Y (2015) Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees. Sci Rep 5:1–12

    Article  Google Scholar 

  37. Navajas M, Migeon A, Alaux C, Martin-Magniette M, Robinson G, Evans J, Cros-Arteil S, Crauser D, Le Conte Y (2008) Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection. BMC Genomics 9:301

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Nazzi F, Le Conte Y (2016) Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Annu Rev Entomol 61:417–432

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. Neumann P, Carreck N (2010) Honey bee colony losses. J Apic Res 49:1–6

    Article  Google Scholar 

  40. Nigro JM, Cho KR, Fearon ER, Kern SE, Ruppert JM, Oliner JD, Vogelstein B (1991) Scrambled exons. Cell 64:607–613

    CAS  PubMed  Article  Google Scholar 

  41. Pamudurti NR, Bartok O, Jens M, Ashwal Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez Hernandez D, Ramberger E, Shenzis S, Samson M, Dittmar G, Landthaler M, Chekulaeva M, Rajewsky N, Kadener S (2017) Translation of circRNAs. Mol Cancer 66:9–21

    CAS  Google Scholar 

  42. Peterson SM, Thompson JA, Ufkin ML, Sathyanarayana P, Liaw L, Congdon CB (2014) Common features of microRNA target prediction tools. Front Genet 5:23

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119

    PubMed  Article  PubMed Central  Google Scholar 

  44. Shen M, Li T, Zhang G, Wu P, Chen F, Lou Q, Chen L, Yin X, Zhang T, Wang J (2019) Dynamic expression and functional analysis of circRNA in granulosa cells during follicular development in chicken. BMC Genomics 20:96

    PubMed  PubMed Central  Article  Google Scholar 

  45. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431–432

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, Liu Y, Chen R, Zhao Y (2013) Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res 41:e166

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Techer MA, Rane RV, Grau ML, Roberts JMK, Sullivan ST, Liachko I, Childers AK, Evans JD, Mikheyev AS (2019) Divergent evolutionary trajectories following speciation in two ectoparasitic honey bee mites. Commun Biol 2:1–16

    Article  Google Scholar 

  48. Thölken C, Thamm M, Erbacher C, Lechner M (2019) Sequence and structural properties of circular RNAs in the brain of nurse and forager honeybees (Apis mellifera). BMC Genomics 20:88

    PubMed  PubMed Central  Article  Google Scholar 

  49. Wong N, Wang X (2005) MiRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res 43:D146–D152

    Article  CAS  Google Scholar 

  50. Xu S, Xiao S, Qiu C, Wang Z (2017) Transcriptome-wide identification and functional investigation of circular RNA in the teleost large yellow croaker (Larimichthys crocea). Mar Genomics 32:71–78

    PubMed  Article  PubMed Central  Google Scholar 

  51. Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, Wong CC, Xiao X, Wang Z (2017) Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res 27:626–641

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Zanni V, Galbraith DA, Annoscia D, Grozinger CM, Nazzi F (2017) Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). Insect Biochem Mol Biol 87:1–13

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  53. Zhang Y, Fons JV (2010) Comparison and integration of target prediction algorithms for microRNA studies. J Integr Bioinform 7:127

    Article  Google Scholar 

  54. Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu SS, Yang L, Chen LL (2013) Circular intronic long noncoding RNAs. Mol Cell 51:792–806

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. Zhang H, Jiang L, Sun D, Hou J, Ji Z (2018) CircRNA: a novel type of biomarker for cancer. Breast Cancer 25:1–7

    PubMed  Article  PubMed Central  Google Scholar 

  56. Zhao J, Wu J, Xu T, Yang Q, He J, Song XF (2018) IRESfinder: identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features. J Genet Genomics 45:403–406

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Lu Gan for her assistance in the data analyses. We also thank Dr. Paul Page for his help on linguistic revision.

Funding

Financial support was granted by the National Natural Science Foundation of China (31902220, Z.L.), the earmarked fund for Modern Agro-industry Technology Research System (CARS-45-SYZ6, T.J.), the China Postdoctoral Science Foundation (2019 M651983, Z.L.), the Science and Technology Support Program of Jiangsu Province (BE2018353, T.J.), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (G.C. and T.J.).

Author information

Affiliations

Authors

Contributions

Conceptualization: T.J., G.C., and Z.L.; methodology: T.J., X.S., and Z.L.; validation: H.X., M.Z., H.C., and YB.L.; investigation: H.X., M.Z., Y.K., K.W., and YB.L.; resources: Y.K., W.W., and YJ.L.; data curation: X.S., YJ.L., and W.W.; writing—original draft preparation: Z.L.; writing—review and editing: X.S., M.Z., and T.J.; supervision: T.J. and G.C.; project administration: T.J. and G.C.; funding acquisition: T.J., G.C., and Z.L.

Corresponding author

Correspondence to Ting Ji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Section Editor: Xing-Quan Zhu

Supplementary information

ESM 1

(PDF 527 kb)

ESM 2

(XLSX 6590 kb)

ESM 3

(FA 23052 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Xu, H., Su, X. et al. Investigation of circular RNAs in an ectoparasitic mite Varroa destructor (Acarina: Varroidae) of the honey bee. Parasitol Res 120, 715–723 (2021). https://doi.org/10.1007/s00436-020-07018-2

Download citation

Keywords

  • Circular RNA
  • Varroa destructor
  • Honey bee
  • Non-coding RNA
  • Ectoparasitic mite