Skip to main content

Advertisement

Log in

Repositioning of leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salts for Chagas disease treatment: Trypanosoma cruzi cell death involving mitochondrial membrane depolarisation and Fe-SOD inhibition

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Trypanosomatidae is a family of unicellular parasites belonging to the phylum Euglenozoa, which are causative agents in high impact human diseases such as Leishmaniasis, Chagas disease and African sleeping sickness. The impact on human health and local economies, together with a lack of satisfactory chemotherapeutic treatments and effective vaccines, justifies stringent research efforts to search for new disease therapies. Here, we present in vitro trypanocidal activity data and mode of action data, repositioning leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salts against Trypanosoma cruzi, the aetiological agent of Chagas disease. This disease is one of the most neglected tropical diseases and is a major public health issue in Central and South America. The disease affects approximately 6–7 million people and is widespread due to increased migratory movements. We screened a suite of leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salt compounds, of which compounds 13, 20 and 21 were identified as trypanocidal drugs. These compounds caused cell death in a mitochondrion-dependent manner through a bioenergetic collapse. Moreover, compounds 13 and 20 showed a remarkable inhibition of iron superoxide dismutase activity of T. cruzi, a key enzyme in the protection from the damage produced by oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abengózar MÁ, Cebrián R, Saugar JM et al (2017) Enterocin AS-48 AS evidence for the use of bacteriocins as new leishmanicidal agents. Antimicrob Agents Chemother 61:e02288–e02216

    Article  PubMed  PubMed Central  Google Scholar 

  • Aldasoro E, Posada E, Requena-Méndez A, Calvo-Cano A, Serret N, Casellas A, Sanz S, Soy D, Pinazo MJ, Gascon J (2018) What to expect and when: benznidazole toxicity in chronic Chagas’ disease treatment. J Antimicrob Chemother 73:1060–1067

    Article  CAS  PubMed  Google Scholar 

  • Andrews KT, Fisher G, Skinner-Adams TS (2014) Drug repurposing and human parasitic protozoan diseases. Int J Parasitol Drugs Drug Resist 4:95–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Bastos CJC, Aras R, Mota G, et al (2010) Clinical outcomes of thirteen patients with acute Chagas disease acquired through oral transmission from two urban outbreaks in Northeastern Brazil 4:16–17

  • Beltrán-Hortelano I, Pérez-Silanes S, Galiano S (2017) Trypanothione reductase and superoxide dismutase as current drug targets for Trypanosoma cruzi: an overview of compounds with activity against Chagas disease. Curr Med Chem 24:1066–1138

    Article  PubMed  CAS  Google Scholar 

  • Bern C (2015) Chagas’ disease. N Engl J Med 373:456–466

    Article  CAS  PubMed  Google Scholar 

  • Bern C, Montgomery SP (2009) An estimate of the burden of Chagas disease in the United States 30341:52–54

  • Bern C, Kjos S, Yabsley MJ, Montgomery SP (2011) Trypanosoma cruzi and chagas’ disease in the United States. Clin Microbiol Rev 24:655–681

    Article  PubMed  PubMed Central  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Blanchet D, Frédérique S, Schijman AG et al (2014) Infection, genetics and evolution first report of a family outbreak of Chagas disease in French Guiana and posttreatment follow-up. Infect Genet Evol 28:245–250

    Article  PubMed  Google Scholar 

  • Bower JD, Gramage GR (1957) Heterocyclic systems related to pyrrocoline. Part II. The preparation of polyazaindenes by dehydrogenative cyclisations. J Chem Soc:4506–4510

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bringaud F, Rivière L, Coustou V (2006) Energy metabolism of trypanosomatids: adaptation to available carbon sources. Mol Biochem Parasitol 149:1–9

    Article  CAS  PubMed  Google Scholar 

  • Cardillo F, Teixeira Pinho R, Zuquim Antas PR, Mengel J (2015) Immunity and immune modulation in Trypanosoma cruzi infection. Pathog Dis 73:ftv082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castro JA, de Mecca MM, Bartel LC (2006) Toxic side effects of drugs used to treat Chagas’ disease (American trypanosomiasis). Hum Exp Toxicol 25:471–479

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Neto E, Chevillard C (2014) Chagas disease cardiomyopathy: immunopathology and genetics. Mediat Inflamm 2014:683230

    Article  CAS  Google Scholar 

  • De Deken RH (1966) The Crabtree effect: a regulatory system in yeast. J Gen Microbiol 44:149–156

    Article  PubMed  Google Scholar 

  • DNDi (2019) https://www.dndi.org/diseases-projects/chagas/%20chagas-target-product-profile/. Accessed 12/10/2019

  • Dolinsky TJ, Czodrowski P, Li H et al (2007) PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res 35:522–525

    Article  Google Scholar 

  • Don R, Ioset JR (2014) Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology 141:140–146

    Article  PubMed  Google Scholar 

  • Fernández-Becerra C, Sanchez-Moreno M, Osuna A, Opperdoes FR (1997) Comparative aspects of energy metabolism in plant Trypanosomatids. J Eukaryot Microbiol 44:523–529

    Article  Google Scholar 

  • Gaspar L, Moraes C, Freitas-Junior L, Ferrari S, Costantino L, Costi M, Coron R, Smith T, Siqueira-Neto J, McKerrow J, Cordeiro-da-Silva A (2015) Current and future chemotherapy for Chagas disease. Curr Med Chem 22:4293–4312

    Article  CAS  PubMed  Google Scholar 

  • Germonprez N, Maes L, Van Puyvelde L et al (2005) In vitro and in vivo anti-leishmanial activity of triterpenoid saponins isolated from Maesa balansae and some chemical derivatives. J Med Chem 48:32–37

    Article  CAS  PubMed  Google Scholar 

  • Hall BS, Wilkinson SR (2012) Activation of benznidazole by Trypanosomal type I nitroreductases results in glyoxal formation. Antimicrob Agents Chemother 56:115–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR (2012) Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminform 4:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto K, Yoshioka K (2012) Review: surveillance of Chagas disease. Adv Parasitol 79:375–428

    Article  PubMed  Google Scholar 

  • Hernández C, Vera MJ, Cucunubá Z, Flórez C, Cantillo O, Buitrago LS, González MS, Ardila S, Dueñas LZ, Tovar R, Forero LF, Ramírez JD (2016) High-resolution molecular typing of two large outbreaks of acute Chagas disease in Colombia. J Infect Dis Adv 214:1252–1255

    Article  Google Scholar 

  • Huey R, Morris GM, Olson AJ, Goodsell DS (2007) Software news and update a semiempirical free energy force field with charge-based desolvation. J Comput Chem 28:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Kendall G, Wilderspin AF, Ashall F, Miles MA, Kelly JM (1990) Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase does not conform to the “hotspot” topogenic signal model. EMBO J 9:2751–2758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kessler RL, Contreras VT, Marliére NP, Aparecida Guarneri A, Villamizar Silva LH, Mazzarotto GACA, Batista M, Soccol VT, Krieger MA, Probst CM (2017) Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host. Mol Microbiol 104:712–736

    Article  CAS  PubMed  Google Scholar 

  • Kirkinezos IG, Moraes CT (2001) Reactive oxygen species and mitochondrial diseases. Semin Cell Dev Biol 12:449–457

    Article  CAS  PubMed  Google Scholar 

  • L. B, J. M J, Y. C et al (2011) Chagas disease in european countries: the challenge of a surveillance system. Eurosurveillance 16:3

    Google Scholar 

  • Lee W, Thévenod F (2006) A role for mitochondrial aquaporins in cellular life-and-death decisions? AJP Cell Physiol 291:C195–C202

    Article  CAS  Google Scholar 

  • López-Céspedes Á, Villagrán E, Briceño Álvarez K et al (2011) Trypanosoma cruzi: seroprevalence detection in suburban population of Santiago de Querétaro (Mexico). Sci World J 2012:914129

    Google Scholar 

  • Maes L, Vanden Berghe D, Germonprez N et al (2004) In vitro and in vivo activities of a triterpenoid saponin extract (PX-6518) from the plant Maesa balansae against visceral Leishmania species. Antimicrob Agents Chemother 48:130–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Escolano R, Moreno-Viguri E, Santivanez-Veliz M et al (2018) Second generation of Mannich base-type derivatives with in vivo activity against Trypanosoma cruzi. J Med Chem 61:5643–5663

    Article  PubMed  CAS  Google Scholar 

  • Martín-Escolano R, Cebrián R, Martín-Escolano J, Rosales MJ, Maqueda M, Sánchez-Moreno M, Marín C (2019a) Insights into Chagas treatment based on the potential of bacteriocin AS-48. IJP Drugs Drug Resist 10:1–8

    Article  Google Scholar 

  • Martín-Escolano R, Marín C, Vega M, Martin-Montes Á, Medina-Carmona E, López C, Rotger C, Costa A, Sánchez-Moreno M (2019b) Synthesis and biological evaluation of new long-chain squaramides as anti-chagasic agents in the BALB/c mouse model. Bioorganic Med Chem 27:865–879

    Article  CAS  Google Scholar 

  • Martín-Escolano R, Molina-Carreño D, Delgado-Pinar E, Martin-Montes Á, Clares MP, Medina-Carmona E, Pitarch-Jarque J, Martín-Escolano J, Rosales MJ, García-España E, Sánchez-Moreno M, Marín C (2019c) New polyamine drugs as more effective antichagas agents than benznidazole in both the acute and chronic phases. Eur J Med Chem 164:27–46

    Article  PubMed  CAS  Google Scholar 

  • Martinez A, Peluffo G, Petruk AA, Hugo M, Piñeyro D, Demicheli V, Moreno DM, Lima A, Batthyány C, Durán R, Robello C, Martí MA, Larrieux N, Buschiazzo A, Trujillo M, Radi R, Piacenza L (2014) Structural and molecular basis of the peroxynitrite-mediated nitration and inactivation of Trypanosoma cruzi iron-superoxide dismutases (FE-SODs) A and B : disparate susceptibilities due to the repair of Tyr35 radical by Cys83 in FE-SODB through intramolecular electron transfer. J Biol Chem 289:12760–12778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Montes Á, Ballesteros-Garrido R, Martín-Escolano R, Marín C, Guitiérrez-Sánchez R, Abarca B, Ballesteros R, Sanchez-Moreno M (2017) Synthesis and in vitro leishmanicidal activity of novel [1,2,3]triazolo[1,5-a]pyridine salts. RSC Adv 7:15715–15726

    Article  Google Scholar 

  • Maugeri DA, Cannata JJB, Cazzulo JJ (2011) Glucose metabolism in Trypanosoma cruzi. Essays Biochem 51:15–30

    Article  CAS  PubMed  Google Scholar 

  • Mejia AM, Hall BS, Taylor MC, Gómez-Palacio A, Wilkinson SR, Triana-Chávez O, Kelly JM (2012) Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. J Infect Dis 206:220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michels PAM, Bringaud F, Herman M, Hannaert V (2006) Metabolic functions of glycosomes in trypanosomatids. Biochim Biophys Acta - Mol Cell Res 1763:1463–1477

    Article  CAS  Google Scholar 

  • Molina I, Gómez i Prat J, Salvador F, Treviño B, Sulleiro E, Serre N, Pou D, Roure S, Cabezos J, Valerio L, Blanco-Grau A, Sánchez-Montalvá A, Vidal X, Pahissa A (2014) Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N Engl J Med 370:1899–1908

    Article  PubMed  CAS  Google Scholar 

  • Moncayo Á, Silveira AC (2009) Current epidemiological trends of Chagas disease in Latin America and future challenges in epidemiology, surveillance, and health policy. Mem Inst Oswaldo Cruz 104:17–30

    Article  PubMed  Google Scholar 

  • Moreno-Viguri E, Jiménez-Montes C, Martín-Escolano R, Santivañez-Veliz M, Martin-Montes A, Azqueta A, Jimenez-Lopez M, Zamora Ledesma S, Cirauqui N, López de Ceráin A, Marín C, Sánchez-Moreno M, Pérez-Silanes S (2016) In vitro and in vivo anti-Trypanosoma cruzi activity of new arylamine Mannich base-type derivatives. J Med Chem 59:10929–10945

    Article  CAS  PubMed  Google Scholar 

  • Morillo CA, Marin-Neto JA, Avezum A, Sosa-Estani S, Rassi A Jr, Rosas F, Villena E, Quiroz R, Bonilla R, Britto C, Guhl F, Velazquez E, Bonilla L, Meeks B, Rao-Melacini P, Pogue J, Mattos A, Lazdins J, Rassi A, Connolly SJ, Yusuf S, BENEFIT Investigators (2015) Randomized trial of Benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 373:1295–1306

    Article  CAS  PubMed  Google Scholar 

  • Morillo CA, Waskin H, Sosa-Estani S, del Carmen Bangher M, Cuneo C, Milesi R, Mallagray M, Apt W, Beloscar J, Gascon J, Molina I, Echeverria LE, Colombo H, Perez-Molina JA, Wyss F, Meeks B, Bonilla LR, Gao P, Wei B, McCarthy M, Yusuf S, STOP-CHAGAS Investigators (2017) Benznidazole and posaconazole in eliminating parasites in asymptomatic T. cruzic: the STOP-CHAGAS Trial. J Am Coll Cardiol 69:939–947

    Article  CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W et al (2010) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791

    Article  CAS  Google Scholar 

  • Muñoz IG, Moran JF, Becana M, Montoya G (2009) The crystal structure of an eukaryotic iron superoxide dismutase suggests intersubunit cooperation during catalysis. Protein Sci 14:387–394

    Article  CAS  Google Scholar 

  • Nwaka S, Besson D, Ramirez B, Maes L, Matheeussen A, Bickle Q, Mansour NR, Yousif F, Townson S, Gokool S, Cho-Ngwa F, Samje M, Misra-Bhattacharya S, Murthy PK, Fakorede F, Paris JM, Yeates C, Ridley R, van Voorhis WC, Geary T (2011) Integrated dataset of screening hits against multiple neglected disease pathogens. PLoS Negl Trop Dis 5:e1412

    Article  PubMed  PubMed Central  Google Scholar 

  • Paucar R, Martín-Escolano R, Moreno-Viguri E, Cirauqui N, Rodrigues CR, Marín C, Sánchez-Moreno M, Pérez-Silanes S, Ravera M, Gabano E (2019) A step towards development of promising trypanocidal agents: synthesis, characterization and in vitro biological evaluation of ferrocenyl Mannich base-type derivatives. Eur J Med Chem 163:569–582

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Molina JA, Molina I (2018) Chagas disease. Lancet 391:82–94

    Article  PubMed  Google Scholar 

  • Pérez-Molina JA, Norman F, López-Vélez R (2012) Chagas disease in non-endemic countries: epidemiology, clinical presentation and treatment. Curr Infect Dis Rep 14:263–274

    Article  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pless-Petig G, Metzenmacher M, Türk TR, Rauen U (2012) Aggravation of cold-induced injury in Vero-B4 cells by RPMI 1640 medium - identification of the responsible medium components. BMC Biotechnol 12:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Requena-Méndez A, Aldasoro E, de Lazzari E, Sicuri E, Brown M, Moore DAJ, Gascon J, Muñoz J (2015) Prevalence of Chagas disease in Latin-American migrants living in Europe: a systematic review and meta-analysis. PLoS Negl Trop Dis 9:e0003540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro AL, Maria P, Teixeira MM, Rocha MOC (2012) Diagnosis and management of Chagas disease and cardiomyopathy. Nat Rev Cardiol 9:576–589

    Article  CAS  PubMed  Google Scholar 

  • Sandes JM, Fontes A, Regis-da-Silva CG, de Castro MCAB, Lima-Junior CG, Silva FPL, Vasconcellos MLAA, Figueiredo RCBQ (2014) Trypanosoma cruzi cell death induced by the Morita-Baylis-Hillman adduct 3-hydroxy-2-methylene-3-(4-Nitrophenylpropanenitrile). PLoS One 9:e93936

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sereno D, Tibayrenc M, Villarreal D, Barnabe C (2004) Lack of correlation between in vitro susceptibility to Benznidazole and phylogenetic diversity of Trypanosoma cruzi , the agent of Chagas disease. Exp Parasitol 108:24–31

    Article  PubMed  CAS  Google Scholar 

  • Tarleton RL (2015) CD8+ T cells in Trypanosoma cruzi infection. Semin Immunopathol 37:233–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Téllez-Meneses J, Mejía-Jaramillo AM, Triana-Chávez O (2008) Biological characterization of Trypanosoma cruzi stocks from domestic and sylvatic vectors in Sierra Nevada of Santa Marta, Colombia. Acta Trop 108:26–34

    Article  PubMed  Google Scholar 

  • Tyler KM, Engman DM (2001) The life cycle of Trypanosoma cruzi revisited. Int J Parasitol 31:472–481

    Article  CAS  PubMed  Google Scholar 

  • Verma NK, Singh G, Dey CS (2007) Miltefosine induces apoptosis in arsenite-resistant Leishmania donovani promastigotes through mitochondrial dysfunction. Exp Parasitol 116:1–13

    Article  CAS  PubMed  Google Scholar 

  • WHO (2019) Chagas disease (American trypanosomiasis) fact sheet. https://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis. Accessed 12/10/2019

  • Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I (2008) A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci U S A 105:5022–5027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zingales B (2017) Trypanosoma cruzi genetic diversity: something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop S0001-706X(17)30426–6

  • Zingales B, Miles MA, Moraes CB, Luquetti A, Guhl F, Schijman AG, Ribeiro I, Drugs for Neglected Disease Initiative, Chagas Clinical Research Platform Meeting (2014) Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz 109:828–883

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the Ministerio de Economia, Industria y Competitividad (CONSOLIDER CSD2010–00065 and CTQ2017–90852-REDC), including funds from the European Regional Development Fundings (ERDF), Generalitat Valenciana Prometeo 2015/002 and from University of Valencia (Spain) (UV-INV-AE 15-332846). RM-E received an FPU Grant [FPU14/01537] from the Ministry of Education of Spain. Central Services for Experimental Research (SCSIE, Universitat de València) and U26 of ICTS NANBIOSIS platform provided the equipment employed.

Author information

Authors and Affiliations

Authors

Contributions

RM-E and CM designed the study. RM-E, JM-E, RB-G and NC performed the experiments. RM-E, JM-E and NC collected and analysed the data. RM-E, RB-G and NC wrote the manuscript. RM-E, RB-G, BA, MJR, MS-M, RB and CM reviewed and edited the manuscript. All the authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Clotilde Marín.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Sarah Hendrickx

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 292 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Escolano, R., Martín-Escolano, J., Ballesteros-Garrido, R. et al. Repositioning of leishmanicidal [1,2,3]Triazolo[1,5-a]pyridinium salts for Chagas disease treatment: Trypanosoma cruzi cell death involving mitochondrial membrane depolarisation and Fe-SOD inhibition. Parasitol Res 119, 2943–2954 (2020). https://doi.org/10.1007/s00436-020-06779-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06779-0

Keywords

Navigation