A phylogenetic study of the cecal amphistome Zygocotyle lunata (Trematoda: Zygocotylidae), with notes on the molecular systematics of Paramphistomoidea

Abstract

Zygocotyle lunata inhabits the caecum of birds and mammals from the American continent. This amphistome parasite is easily maintained in the laboratory and serves as a model organism in life-cycle studies, but it has seldom been studied using molecular data. Neither the position of Z. lunata in the superfamily Paramphistomoidea nor the monophyly of the Zygocotylidae has been evaluated with molecular phylogenetic methods. In the present study, adult specimens of Z. lunata obtained experimentally in mice from Brazil were submitted to molecular studies. Partial sequences of nuclear (1261 bp of 28S and 418 bp of 5.8S-ITS-2) and mitochondrial (1410 bp of cytochrome c oxidase 1, cox1) markers were compared with published data. In the most well-resolved phylogeny, based on 28S sequences, Z. lunata clustered in a well-supported clade with Wardius zibethicus, the only other species currently included in the Zygocotylidae, thus confirming the validity of this family. Divergence of 28S sequences between these species was 2.2%, which falls in the range of intergeneric variation (0.9–5.6%) observed in the other two monophyletic groups in the 28S tree, i.e., representatives of Gastrodicidae and Neotropical cladorchiids (Cladorchiidae). Analysis of ITS-2 and two parts of the cox1 gene placed Z. lunata within poorly resolved clades or large polytomies composed of several paramphistomoid families, without clarifying higher-level phylogenetic relationships. The cox1 of a Brazilian isolate of Z. lunata is 99.6% similar to a Canadian isolate, confirming the pan-American distribution of the species. Finally, our phylogenetic reconstructions of Paramphistomoidea revealed a complex scenario in the taxonomic composition of some amphistome families, which highlights a need for further integrative studies that will likely result in rearrangements of traditional morphology-based classifications.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barbosa FS, Pinto HA, Melo AL (2011) Biomphalaria straminea (Mollusca: Planorbidae) como hospedeiro intermediário de Zygocotyle lunata (Trematoda: Zygocotylidae) no Brasil. Neotrop Helminthol 5:241–246

  2. Besprozvannykh VV, Rozhkovan KV, Ermolenko AV, Izrailskaya (2018) Diplodiscus mehrai Pande, 1937 and D. japonicus (Yamaguti, 1936): morphology of developmental stages and molecular data. Helminthologia 55:60–69. https://doi.org/10.1515/helm-2017-0049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Blair D (2005) Family Microscaphidiidae Looss, 1900. In: Jones A, Bray RA, Gibson DI (eds.), Keys to the Trematoda. Volume 2. CAB International & The Natural History Museum, Wallingford, pp 193–211

  4. Bowles J, Blair D, McManus DP (1995) A molecular phylogeny of the human schistosomes. Mol Phylogenet Evol 4:103–109. https://doi.org/10.1006/mpev.1995.1011

    CAS  Article  PubMed  Google Scholar 

  5. Chai JY (2019) Human intestinal flukes. From discovery to treatment and control. Springer, Netherlands

  6. Chai JY, Jung BK (2019) Epidemiology of trematode infections: an update. In Toledo R, Fried B. Digenetic trematodes. Adv Exp Med Biol 1154, Springer:359–409. https://doi.org/10.1007/978-3-030-18616-6_12

    Article  PubMed  Google Scholar 

  7. Chamuah JK, Raina OK, Lalrinkima H, Jacob SS, Sankar M, Sakhrie A, Lama S, Banerjee PS (2016) Molecular characterization of veterinary important trematode and cestode species in the mithun Bos frontalis from north-east India. J Helminthol 90:577–582. https://doi.org/10.1017/S0022149X15000772

    CAS  Article  PubMed  Google Scholar 

  8. Choudhury A, Aguirre-Macedo ML, Curran SS, Ostrowski de Núñez M, Overstreet RM, Pérez-Ponce de León G, Santos CP (2016) Trematode diversity in freshwater fishes of the globe II: ‘New World’. Syst Parasitol 93:271–282. https://doi.org/10.1007/s11230-016-9632-1

    Article  PubMed  Google Scholar 

  9. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. https://doi.org/10.1093/nar/gkn180

  10. Dube S, Sibula MS, Dhlamini Z (2016) Molecular analysis of selected paramphistome isolates from cattle in southern Africa. J Helminthol 90:784–788. https://doi.org/10.1017/S0022149X15000905

    CAS  Article  PubMed  Google Scholar 

  11. Eduardo SL (1982) The taxonomy of the family Paramphistomidae Fischoeder, 1901 with special reference to the morphology of species occurring in ruminants. I. General considerations. Syst Parasitol 4:7–57. https://doi.org/10.1007/BF00012228

    Article  Google Scholar 

  12. Firdausy LW, Prahardani R, Wusahaningtyas LS, Indarjulianto S, Wahyu M, Nursalim MT, Nurcahyo W (2019) Morphological and molecular identification of Pfenderius heterocaeca (Trematode: Paramphistomoidea) from Sumatran elephant (Elephas maximus sumatranus). Vet World 12:1341–1345. https://doi.org/10.14202/vetworld.2019.1341-1345

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Fried B, Huffman JE, Keeler S, Peoples RC (2009) The biology of the caecal trematode Zygocotyle lunata. Adv Parasitol 69:1–40. https://doi.org/10.1016/S0065-308X(09)69001-1

    Article  PubMed  Google Scholar 

  14. Fu YT, Jin YC, Liu GH (2019) The complete mitochondrial genome of the caecal fluke of poultry, Postharmostomum commutatum, as the first representative from the superfamily Brachylaimoidea. Front Genet 10:1037. https://doi.org/10.3389/fgene.2019.01037

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Ghatani S, Shylla JA, Roy B, Tandon V (2014) Multilocus sequence evaluation for differentiating species of the trematode family Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification. Gene 548:277–284. https://doi.org/10.1016/j.gene.2014.07.046

    CAS  Article  PubMed  Google Scholar 

  16. Huson KM, Oliver NAM, Robinson MW (2017) Paramphistomosis of ruminants: an emerging parasitic disease in Europe. Trends Parasitol 33:836–844. https://doi.org/10.1016/j.pt.2017.07.002

    Article  PubMed  Google Scholar 

  17. Ichikawa M, Kondoh D, Bawn S, Maw NN, Htun LL, Thein M, Gyi A, Sunn K, Katakura K, Itagaki T (2013) Morphological and molecular characterization of Explanatum explanatum from cattle and buffaloes in Myanmar. J Vet Med Sci 75:309–314. https://doi.org/10.1292/jvms.12-0389

    Article  PubMed  Google Scholar 

  18. Jones A (2005a) Superfamily Paramphistomoidea Fischoeder, 1901. In: Jones A, Bray RA, Gibson DI (eds.), Keys to the Trematoda. Volume 2. CAB International & The Natural History Museum, Wallingford, pp 221–227

  19. Jones A (2005b) Family Zygocotylidae Ward, 1917. In: Jones A, Bray RA, Gibson DI (eds.), Keys to the Trematoda. Volume 2. CAB International & The Natural History Museum, Wallingford, pp 353–356

  20. Jones A (2005c) Family Stephanopharyngidae stiles & Goldberger, 1910. In: Jones A, Bray RA, Gibson DI (eds.), Keys to the Trematoda. Volume 2. CAB International & The Natural History Museum, Wallingford, pp 347–348

  21. Jones A (2005d) Family Olveriidae Yamaguti, 1958. In: Jones A, Bray RA, Gibson DI (eds.), Keys to the Trematoda. Volume 2. CAB International & The Natural History Museum, Wallingford, pp 343–345

  22. Jones A (2005e) Family Gastrodiscidae Monticelli, 1892. In: Jones A, Bray RA, Gibson DI (eds.), Keys to the Trematoda. Volume 2. CAB International & The Natural History Museum, Wallingford, pp 325–336

  23. Jones A, Blair D (2005) Family Mesometridae Poche, 1926. In: Jones A, Bray RA, Gibson DI (eds.), Keys to the Trematoda. Volume 2. CAB International & The Natural History Museum, Wallingford, pp 213–219

  24. Jørgensen A, Kristensen TK, Stothard JR (2004) An investigation of the “Ancyloplanorbidae” (Gastropoda, Pulmonata, Hygrophila): preliminary evidence from DNA sequence data. Mol Phyl Evol 32:778–787. https://doi.org/10.1016/j.ympev.2004.02.011

    CAS  Article  Google Scholar 

  25. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14:587–589. https://doi.org/10.1038/nmeth.4285

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Laidemitt MR, Zawadzki ET, Brant SV, Mutuku MW, Mkoji GM, Loker ES (2017) Loads of trematodes: discovering hidden diversity of paramphistomoids in Kenyan ruminants. Parasitology 144:131–147. https://doi.org/10.1017/S0031182016001827

    CAS  Article  PubMed  Google Scholar 

  29. Le TH, Nguyen KT, Nguyen NTB, Doan HTT, Agatsuma T, Blair D (2019) The complete mitochondrial genome of Paragonimus ohirai (Paragonimidae: Trematoda: Platyhelminthes) and its comparison with P. westermani congeners and other trematodes. PeerJ 7:e7031. https://doi.org/10.7717/peerj.7031

    Article  PubMed  PubMed Central  Google Scholar 

  30. Li Y, Ma XX, Lv QB, Hu Y, Qiu HY, Chang QC, Wang CR (2020) Characterization of the complete mitochondrial genome sequence of Tracheophilus cymbius (Digenea), the first representative from the family Cyclocoelidae. J Helminthol 94:e101. https://doi.org/10.1017/s0022149x19000932

    Article  Google Scholar 

  31. Lotfy WM, Brant SV, Ashmawy KI, Devkota R, Mkoji GM, Loker ES (2010) A molecular approach for identification of paramphistomes from Africa and Asia. Vet Parasitol 174:234–240. https://doi.org/10.1016/j.vetpar.2010.08.027

    CAS  Article  PubMed  Google Scholar 

  32. Mas-Coma S, Bargues MD, Valero MA (2006) Gastrodiscoidiasis, a plant-borne zoonotic disease caused by the intestinal amphistome fluke Gastrodiscoides hominis (Trematoda: Gastrodiscidae). Rev Iber Parasitol 66:75–81

    Google Scholar 

  33. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), 14 Nov. 2010, New Orleans, LA, 1–8. https://doi.org/10.1145/2016741.2016785

  34. Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195. https://doi.org/10.1093/molbev/mst024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Miura O, Kuris AM, Torchin ME, Hechinger RF, Dunham EJ, Chiba S (2005) Molecular-genetic analyses reveal cryptic species of trematodes in the intertidal gastropod, Batillaria cumingi (Crosse). Int J Parasitol 35:793–801. https://doi.org/10.1016/j.ijpara.2005.02.014

    CAS  Article  PubMed  Google Scholar 

  36. Mohanta UK, Rana HB, Devkota B, Itagaki T (2017) Molecular and phylogenetic analyses of the liver amphistome Explanatum explanatum (Creplin, 1847) Fukui, 1929 in ruminants from Bangladesh and Nepal based on nuclear ribosomal ITS2 and mitochondrial nad1 sequences. J Helminthol 91:497–503. https://doi.org/10.1017/S0022149X16000420

    CAS  Article  PubMed  Google Scholar 

  37. Morgan JA, DeJong RJ, Jung Y, Khallaayoune K, Kock S, Mkoji GM, Loker ES (2002) A phylogeny of planorbid snails, with implications for the evolution of Schistosoma parasites. Mol Phyl Evol 25:477–488. https://doi.org/10.1016/S1055-7903(02)00280-4

    CAS  Article  Google Scholar 

  38. Nadler SA, Pérez-Ponce de León G (2011) Integrating molecular and morphological approaches for characterizing parasite cryptic species: implications for parasitology. Parasitology 138:1688–1709. https://doi.org/10.1017/S003118201000168X

    CAS  Article  PubMed  Google Scholar 

  39. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274. https://doi.org/10.1093/molbev/msu300

    CAS  Article  PubMed  Google Scholar 

  40. Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol 33:733–755. https://doi.org/10.1016/S0020-7519(03)00049-3

    CAS  Article  PubMed  Google Scholar 

  41. Ostrowski de Núñez M, Spatz L, González-Cappa SM (2003) New intermediate hosts in the life cycle of Zygocotyle lunata in South America. J Parasitol 89:193–194. https://doi.org/10.1645/0022-3395(2003)089[0193:NIHITL]2.0.CO;2

    Article  PubMed  Google Scholar 

  42. Ostrowski de Núñez M, Davies D, Spatz L (2011) The life cycle of Zygocotyle lunata (Trematoda, Paramphistomoidea) in the subtropical region of South America. Rev Mex Biodivers 82:581–588

    Google Scholar 

  43. Pantoja C, Scholz T, Luque JL, Jones A (2019) First molecular assessment of the interrelationships of cladorchiid digeneans (Digenea: Paramphistomoidea), parasites of Neotropical fishes, including descriptions of three new species and new host and geographical records. Folia Parasitol 66:011. https://doi.org/10.14411/fp.2019.011

    CAS  Article  Google Scholar 

  44. Pérez-Ponce de Léon G, Hernández-Mena DI (2019) Testing the higher-level phylogenetic classification of Digenea (Platyhelminthes, Trematoda) based on nuclear rDNA sequences before entering the age of the ‘next-generation’ tree of life. J Helminthol 93:260–276. https://doi.org/10.1017/S0022149X19000191

    CAS  Article  PubMed  Google Scholar 

  45. Pinto HA, Assis JCA, Silva BCM, Gonçalves NQ, Melo AL (2019) Zygocotyle lunata as a model for in vivo screening of anthelmintic activity against paramphistomes: evaluation of efficacy of praziquantel, albendazole and closantel in experimentally infected mice. Exp Parasitol 199:74–79. https://doi.org/10.1016/j.exppara.2019.02.007

    CAS  Article  PubMed  Google Scholar 

  46. Pleijel F, Jondelius U, Norlinder E, Nygren A, Oxelman B, Schander C, Sundberg P, Thollesson M (2008) Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol Phylogenet Evol 48:369–371. https://doi.org/10.1016/j.ympev.2008.03.024

    CAS  Article  PubMed  Google Scholar 

  47. Rajapakse RP, Pham KL, Karunathilake KK, Lawton SP, Le TH (2020) Characterization and phylogenetic properties of the complete mitochondrial genome of Fascioloides jacksoni (syn. Fasciola jacksoni) support the suggested intergeneric change from Fasciola to Fascioloides (Platyhelminthes: Trematoda: Plagiorchiida). Infect Genet Evol 82:104281. https://doi.org/10.1016/j.meegid.2020.104281

    CAS  Article  PubMed  Google Scholar 

  48. Rambaut A (2012) FigTree v1.4. Available from http://tree.bio.ed.ac.uk/software/figtree/. Accessed Feb 2020

  49. Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. Available at http://beast.bio.ed.ac.uk/Tracer

  50. Rinaldi L, Perugini AG, Capuano F, Fenizia D, Musella V, Veneziano V, Cringoli G (2005) Characterization of the second internal transcribed spacer of ribosomal DNA of Calicophoron daubneyi from various hosts and locations in southern Italy. Vet Parasitol 131:247–253. https://doi.org/10.1016/j.vetpar.2005.04.035

    CAS  Article  PubMed  Google Scholar 

  51. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sargison N, Francis E, Davison C, Bronsvoort BM, Handel I, Mazeri S (2016) Observations on the biology, epidemiology and economic relevance of rumen flukes (Paramphistomidae) in cattle kept in a temperate environment. Vet Parasitol 219:7–16. https://doi.org/10.1016/j.vetpar.2016.01.010

    Article  PubMed  Google Scholar 

  53. Sela I, Ashkenazy H, Katoh K, Pupko T (2015) GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res 43:W7–W14. https://doi.org/10.1093/nar/gkq443

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Sey O (1988) Scope of and proposal for systematics of the Amphistomida (Lühe, 1909) Odening, 1974 (Trematoda). Parasitol Hung 21:17–30

    Google Scholar 

  55. Sey O (1991) CRC Handbook of the zoology of amphistomes. CRC Press, Boca Raton

  56. Shylla JA, Ghatani S, Tandon V (2013) Utility of divergent domains of 28S ribosomal RNA in species discrimination of paramphistomes (Trematoda: Digenea: Paramphistomoidea). Parasitol Res 112:4239–4253. https://doi.org/10.1007/s00436-013-3616-8

    Article  PubMed  Google Scholar 

  57. Silva GS, Romera DM, Fonseca LEC, Meireles MV (2016) Helminthic parasites of chickens (Gallus domesticus) in different regions of São Paulo state, Brazil. Rev Bras Cienc Avic 18:163–168. https://doi.org/10.1590/18069061-2015-0122

  58. Sokolov SG, Lebedeva DI, Kalmykov AP (2016) Phylogenetic position of trematode Amurotrema dombrovskajae Achmerow, 1959 (Paramphistomoidea: Cladorchiidae) based on partial 28S eDNA nucleotide sequences. Helminthologia 53:161–164. https://doi.org/10.1515/helmin-2016-0006

    Article  Google Scholar 

  59. Spatz L, Cappa SM, Ostrowski de Núñez M (2012) Susceptibility of wild populations of Biomphalaria spp. from Neotropical South America to Schistosoma mansoni and interference of Zygocotyle lunata. J Parasitol 98:1291–1295. https://doi.org/10.1645/GE-3002.1

    Article  PubMed  Google Scholar 

  60. Suleman KMS, Heneberg P, Zhou CY, Muhammad N, Zhu XQ, Ma J (2019) Characterization of the complete mitochondrial genome of Uvitellina sp., representative of the family Cyclocoelidae and phylogenetic implications. Parasitol Res 118:2203–2211. https://doi.org/10.1007/s00436-019-06358-y

    CAS  Article  PubMed  Google Scholar 

  61. Tandon V, Roy B, Shylla JA, Ghatani S (2019) Amphistomes. In: Toledo R, Fried B (eds) Digenetic Trematodes, Advances in experimental medicine and biology, vol 1154. Springer, Cham, pp 255–277. https://doi.org/10.1007/978-3-030-18616-6_9

    Google Scholar 

  62. Tkach VV, Littlewood DTJ, Olson PD, Kinsella JM, Swiderski Z (2003) Molecular phylogenetic analysis of the Microphalloidea Ward, 1901 (Trematoda: Digenea). Syst Parasitol 56:1–15. https://doi.org/10.1023/a:1025546001611

    Article  PubMed  Google Scholar 

  63. Travassos LP, Freitas JFT, Kohn A (1969) Trematódeos do Brasil. Mem Inst Oswaldo Cruz 67:1–886

    CAS  PubMed  Google Scholar 

  64. Van Steenkiste N, Locke SA, Castelin M, Marcogliese DJ, Abbott CL (2015) New primers for DNA barcoding of digeneans and cestodes (Platyhelminthes). Mol Ecol Resour 15:945–952. https://doi.org/10.1111/1755-0998.12358

    CAS  Article  PubMed  Google Scholar 

  65. Willey CH (1941) The life history and bionomics of the trematode Zygocotyle lunata (Paramphistomatidae). Zoologica 26:65–88

    Google Scholar 

  66. Yamaguti S (1971) Synopsis of digenetic trematodes of vertebrates, vol. 1. Keigaku Publishing Company, Tokyo

  67. Yang X, Wang L, Feng H, Qi M, Zhang Z, Gao C, Wang C, Hu M, Fang R, Li C (2016) Characterization of the complete mitochondrial genome sequence of Homalogaster paloniae (Gastrodiscidae, Trematoda) and comparative analyses with selected digeneans. Parasitol Res 115:3941–3949. https://doi.org/10.1007/s00436-016-5160-9

    Article  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by CAPES (postdoc scholarship to PVA and doctoral scholarship to JCAA and DLH), CNPq (doctoral scholarship to EAPM and research scholarship to HAP and ALM), and the National Science Foundation (grant 1845021 to SAL).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hudson A. Pinto.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Section Editor: Elizabeth Marie Warburton

Electronic supplementary material

ESM 1

(DOCX 45.6 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alves, P.V., Assis, J.C.A., López-Hernández, D. et al. A phylogenetic study of the cecal amphistome Zygocotyle lunata (Trematoda: Zygocotylidae), with notes on the molecular systematics of Paramphistomoidea. Parasitol Res 119, 2511–2520 (2020). https://doi.org/10.1007/s00436-020-06749-6

Download citation

Keywords

  • Amphistomes
  • Phylogeny
  • Taxonomy
  • Trematodes
  • Zygocotyle