Skip to main content

Advertisement

Log in

Experimental models in Chagas disease: a review of the methodologies applied for screening compounds against Trypanosoma cruzi

  • Review
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

One of the main problems of Chagas disease (CD), the parasitic infection caused by Trypanosoma cruzi, is the lack of a completely satisfactory treatment, which is currently based on two old nitroheterocyclic drugs (i.e., nifurtimox and benznidazole) that show important limitations for treating patients. In this context, many laboratories look for alternative therapies potentially applicable to the treatment, and therefore, research in CD chemotherapy works in the design of experimental protocols for detecting molecules with activity against T. cruzi. Phenotypic assays are considered the most valuable strategy for screening these antiparasitic compounds. Among them, in vitro experiments are the first step to test potential anti-T. cruzi drugs directly on the different parasite forms (i.e., epimastigotes, trypomastigotes, and amastigotes) and to detect cytotoxicity. Once the putative trypanocidal drug has been identified in vitro, it must be moved to in vivo models of T. cruzi infection, to explore (i) acute toxicity, (ii) efficacy during the acute infection, and (iii) efficacy in the chronic disease. Moreover, in silico approaches for predicting activity have emerged as a supporting tool for drug screening procedures. Accordingly, this work reviews those in vitro, in vivo, and in silico methods that have been routinely applied during the last decades, aiming to discover trypanocidal compounds that contribute to developing more effective CD treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ablett EM, Sturm RA, Parsons PG (1998) Improved β-galactosidase reporter assays: optimization for low activity in mammalian cells. Tech Tips Online 3:29–31

    Article  Google Scholar 

  • Allen DD, Caviedes R, Cárdenas AM, Shimahara T, Segura-Aguilar J, Caviedes PA (2005) Cell lines as in vitro models for drug screening and toxicity studies. Drug Dev Ind Pharm 31:757–768

    Article  CAS  Google Scholar 

  • Alonso-Padilla J, Cotillo I, Presa JL, Cantizani J, Peña I, Bardera AI, Martín JJ, Rodríguez A (2015) Automated high-content assay for compounds selectively toxic to Trypanosoma cruzi in a myoblastic cell line. PLoS Negl Trop Dis 9:e0003493. https://doi.org/10.1371/journal.pntd.0003493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andriani G, Chessler ADC, Courtemanche G, Burleigh BA, Rodríguez A (2011) Activity in vivo of anti-Trypanosoma cruzi compounds selected from a high throughput screening. PLoS Negl Trop Dis 5:e1298. https://doi.org/10.1371/journal.pntd.0001298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravena CM, Olea-Azar C, Cerecetto H, González M, Maya JD, Rodríguez-Becerra J (2011) Potent 5-nitrofuran derivatives inhibitors of Trypanosoma cruzi growth: electrochemical, spectroscopic and biological studies. Spectrochim Acta A Mol Biomol Spectrosc 79:312–319

    Article  Google Scholar 

  • Bahia MT, de Andrade IM, Martins TAF, do Nascimento AFS, Diniz LF, Caldas IS, Talvani A, Trunz BB, Torreele E, Ribeiro I (2012) Fexinidazole: a potential new drug candidate for Chagas disease. PLoS Negl Trop Dis 6:e1870. https://doi.org/10.1371/journal.pntd.0001870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahia MT, Nascimento AFS, Mazzeti AL, Marques LF, Gonçalves KR, Mota LWR, Diniz LF, Caldas IS, Talvani A, Shackleford DM, Koltun M, Saunders J, White KL, Scandale I, Charman SA, Chatelain E (2014a) Antitrypanosomal activity of fexinidazole metabolites, potential new drug candidates for Chagas disease. Antimicrob Agents Chemother 58:4362–4370

    Article  Google Scholar 

  • Bahia MT, Diniz LF, Mosqueira VCF (2014b) Therapeutical approaches under investigation for treatment of Chagas disease. Expert Opin Investig Drugs 23:1225–1237

    Article  CAS  Google Scholar 

  • Batista DGJ, Batista MM, de Oliveira GM, do Amaral PB, Lannes-Vieira J, Britto CC, Junqueira A, Lima MM, Romanha AJ, Sales Junior PA, Stephens CE, Boykin DW, Soeiro MNC (2010) Arylimidamide DB766, a potential chemotherapeutic candidate for Chagas’ disease treatment. Antimicrob Agents Chemother 54:2940–2952

    Article  CAS  Google Scholar 

  • Bettiol E, Samanovic M, Murkin AS, Raper J, Buckner F, Rodríguez A (2009) Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening. PLoS Negl Trop Dis 3:e384. https://doi.org/10.1371/journal.pntd.0000384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilbao-Ramos P, Sifontes-Rodríguez S, Dea-Ayuela MA, Bolás-Fernández F (2012) A fluorometric method for evaluation of pharmacological activity against intracellular Leishmania amastigotes. J Microbiol Methods 89:8–11

    Article  CAS  Google Scholar 

  • Boiani M, Boiani L, Denicola A, Torres de Ortiz S, Serna E, Vera de Bilbao N, Sanabria L, Yaluff G, Nakayama H, Rojas de Arias A, Vega C, Rolón M, Gómez-Barrio A, Cerecetto H, González M (2006) 2H-Benzimidazole 1,3-dioxide derivatives: a new family of water-soluble anti-trypanosomatid agents. J Med Chem 49:3215–3224

    Article  CAS  Google Scholar 

  • Boiani M, Piacenza L, Hernández P, Boiani L, Cerecetto H, González M, Denicola A (2010) Mode of action of nifurtimox and N-oxide-containing heterocycles against Trypanosoma cruzi: is oxidative stress involved? Biochem Pharmacol 79:1736–1745

    Article  CAS  Google Scholar 

  • Bot C, Hall BS, Bashir N, Taylor MC, Helsby NA, Wilkinson SR (2010) Trypanocidal activity of aziridinyl nitrobenzamide prodrugs. Antimicrob Agents Chemother 54:4246–4252

    Article  CAS  Google Scholar 

  • Branquinha MH, Oliveira SSC, Sangenito LS, Sodré CL, Kneipp LF, d’Avila-Levy CM, Santos ALS (2015) Cruzipain: an update on its potential as chemotherapy target against the human pathogen Trypanosoma cruzi. Curr Med Chem 22:2225–2235

    Article  CAS  Google Scholar 

  • Buckner FS, Verlinde CLMJ, La Flamme AC, van Voorhis WC (1996) Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing β-galactosidase. Antimicrob Agents Chemother 40:2592–2597

    Article  CAS  Google Scholar 

  • Buckner FS, Wilson AJ, van Voorhis WC (1999) Detection of live Trypanosoma cruzi in tissues of infected mice by using histochemical stain for β-galactosidase. Infect Immun 67:403–409

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bustamante JM, Tarleton RL (2011) Methodological advances in drug discovery for Chagas disease. Expert Opin Drug Discov 6:653–661

    Article  CAS  Google Scholar 

  • Bustamante JM, Lo Presti MS, Rivarola HW, Fernández AR, Enders JE, Fretes RE, Paglini-Oliva P (2007) Treatment with benznidazole or thioridazine in the chronic phase of experimental Chagas disease improves cardiopathy. Int J Antimicrob Agents 29:733–737

    Article  CAS  Google Scholar 

  • Camargo EP (1964) Growth and differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop São Paulo 6:93–100

    CAS  PubMed  Google Scholar 

  • Canavaci AMC, Bustamante JM, Padilla AM, Pérez Brandan CM, Simpson LJ, Xu D, Boehlke CL, Tarleton RL (2010) In vitro and in vivo high-throughput assays for the testing of anti-Trypanosoma cruzi compounds. PLoS Negl Trop Dis 4:e740. https://doi.org/10.1371/journal.pntd.0000740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo-Garit JA, Vega MC, Rolón M, Marrero-Ponce Y, Kouznetsov VV, Amado Torres DF, Gómez-Barrio A, Álvarez Bello A, Montero A, Torrens F, Pérez-Giménez F (2010) Computational discovery of novel trypanosomicidal drug-like chemicals by using bond-based non-stochastic and stochastic quadratic maps and linear discriminant analysis. Eur J Pharm Sci 39:30–36

    Article  CAS  Google Scholar 

  • Castillo-Garit JA, Vega MC, Rolón M, Marrero-Ponce Y, Gómez-Barrio A, Escario JA, Álvarez Bello A, Montero A, Torrens F, Pérez-Giménez F, Arán VJ, Abad C (2011) Ligand-based discovery of novel trypanosomicidal drug-like compounds: in silico identification and experimental support. Eur J Med Chem 46:3324–3330

    Article  CAS  Google Scholar 

  • Castillo-Garit JA, del Toro-Cortés O, Kouznetsov VV, Puentes CO, Romero Bohórquez AR, Vega MC, Rolón M, Escario JA, Gómez-Barrio A, Marrero-Ponce Y, Torrens F, Abad C (2012) Identification in silico and in vitro of novel trypanosomicidal drug-like compounds. Chem Biol Drug Des 80:38–45

    Article  CAS  Google Scholar 

  • Castillo-Garit JA, del Toro-Cortés O, Vega MC, Rolón M, Rojas de Arias A, Casañola-Martín GM, Escario JA, Gómez-Barrio A, Marrero-Ponce Y, Torrens F, Abad C (2015) Bond-based bilinear indices for computational discovery of novel trypanosomicidal drug-like compounds through virtual screening. Eur J Med Chem 96:238–244

    Article  CAS  Google Scholar 

  • Chagas C (1909) Nova tripanozomiaze humana: estudos sobre a morfolojia e o ciclo evolutivo do Schizotrypanum cruzi n. gen., n. sp., ajente etiolojico de nova entidade morbida do homem. Mem Inst Oswaldo Cruz 1:159–218

    Article  Google Scholar 

  • Chatelain E (2015) Chagas disease drug discovery: toward a new era. J Biomol Screen 20:22–35

    Article  Google Scholar 

  • Chatelain E, Konar N (2015) Translational challenges of animal models in Chagas disease drug development: a review. Drug Des Devel Ther 9:4807–4823

    Article  CAS  Google Scholar 

  • Contreras VT, Navarro MC, de Lima AR, Arteaga R, Duran F, Askue J, Franco Y (2002) Production of amastigotes from metacyclic trypomastigotes of Trypanosoma cruzi. Mem Inst Oswaldo Cruz 97:1213–1220

    Article  Google Scholar 

  • Coura JR (2009) Present situation and new strategies for Chagas disease chemotherapy: a proposal. Mem Inst Oswaldo Cruz 104:549–554

    Article  CAS  Google Scholar 

  • Coura JR, de Castro SL (2002) A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 97:3–24

    Article  CAS  Google Scholar 

  • da Silva CF, Batista MM, Batista DGJ, de Souza EM, da Silva PB, de Oliveira GM, Meuser AS, Shareef AR, Boykin DW, Soeiro MNC (2008) In vitro and in vivo studies of the trypanocidal activity of a diarylthiophene diamidine against Trypanosoma cruzi. Antimicrob Agents Chemother 52:3307–3314

    Article  Google Scholar 

  • da Silva CF, Batista DGJ, Batista MM, Lionel J, Hammer ER, Brun R, Soeiro MNC (2014) In vitro and in vivo activity of the chloroaryl-substituted imidazole viniconazole against Trypanosoma cruzi. Parasitology 141:367–373

    Article  Google Scholar 

  • da Silva CF, Batista DGJ, de Araújo JS, Cunha-Júnior EF, Stephens CE, Banerjee M, Farahat AA, Akay S, Fisher MK, Boykin DW, Soeiro MNC (2017) Phenotypic evaluation and in silico aDMeT properties of novel arylimidamides in acute mouse models of Trypanosoma cruzi infection. Drug Des Devel Ther 11:1095–1105

    Article  Google Scholar 

  • de Castro SL, Meirelles MN (1990) Mechanism of action of a nitroimidazole-thiadiazole derivate upon Trypanosoma cruzi tissue culture amastigotes. Mem Inst Oswaldo Cruz 85:95–99

    Article  Google Scholar 

  • Dias JCP, Coura JR, Shikanai Yasuda MA (2014) The present situation, challenges, and perspectives regarding the production and utilization of effective drugs against human Chagas disease. Rev Soc Bras Med Trop 47:123–125

    Article  Google Scholar 

  • Don R, Ioset JR (2014) Screening strategies to identify new chemical diversity for drug development to treat kinetoplastid infections. Parasitology 141:140–146

    Article  Google Scholar 

  • Dubner S, Schapachnik E, Pérez Riera AR, Valero E (2008) Chagas disease: state-of-the-art of diagnosis and management. Cardiol J 15:493–504

    PubMed  Google Scholar 

  • Dudek AZ, Arodz T, Gálvez J (2006) Computational methods in developing quantitative structure-activity relationships (QSAR): a review. Comb Chem High Throughput Screen 9:213–228

    Article  CAS  Google Scholar 

  • Ekins S, Mestres J, Testa B (2007) In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol 152:9–20

    Article  CAS  Google Scholar 

  • Escalona J, Carrasco CR, Padrón JA (2003) Introducción al diseño de fármacos. Folleto para la docencia de la asignatura de Farmacia. Universidad de Oriente, Cuba

    Google Scholar 

  • Fauro R, Lo Presti S, Bazan C, Baez A, Strauss M, Triquell F, Cremonezzi D, Negrete OS, Willhuber GC, Paglini-Oliva P, Rivarola HW (2013) Use of clomipramine as chemotherapy of the chronic phase of Chagas disease. Parasitology 140:917–927

    Article  CAS  Google Scholar 

  • Fernandes MC, da Silva EN Jr, Pinto AV, de Castro SL, Menna-Barreto RFS (2012) A novel triazolic naphthofuranquinone induces autophagy in reservosomes and impairment of mitosis in Trypanosoma cruzi. Parasitology 139:26–36

    Article  CAS  Google Scholar 

  • Fonseca-Berzal C, Escario JA, Arán VJ, Gómez-Barrio A (2014) Further insights into biological evaluation of new anti-Trypanosoma cruzi 5-nitroindazoles. Parasitol Res 113:1049–1056

    Article  Google Scholar 

  • Fonseca-Berzal C, da Silva PB, da Silva CF, Vasconcelos M, Batista MM, Escario JA, Arán VJ, Gómez-Barrio A, Soeiro MNC (2015) Exploring the potential activity spectrum of two 5-nitroindazolinone prototypes on different Trypanosoma cruzi strains. Parasitology Open 1:e1. https://doi.org/10.1017/pao.2015.4

    Article  Google Scholar 

  • Fonseca-Berzal C, Ibáñez-Escribano A, Reviriego F, Cumella J, Morales P, Jagerovic N, Nogal-Ruiz JJ, Escario JA, da Silva PB, Soeiro MNC, Gómez-Barrio A, Arán VJ (2016a) Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl-5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H-indazoles. Eur J Med Chem 115:295–310

    Article  CAS  Google Scholar 

  • Fonseca-Berzal C, da Silva CF, Menna-Barreto RFS, Batista MM, Escario JA, Arán VJ, Gómez-Barrio A, Soeiro MNC (2016b) Biological approaches to characterize the mode of action of two 5-nitroindazolinone prototypes on Trypanosoma cruzi bloodstream trypomastigotes. Parasitology 143:1469–1478

    Article  CAS  Google Scholar 

  • Fonseca-Berzal C, Ibáñez-Escribano A, Vela N, Cumella J, Nogal-Ruiz JJ, Escario JA, da Silva PB, Batista MM, Soeiro MNC, Sifontes-Rodríguez S, Meneses-Marcel A, Gómez-Barrio A, Arán VJ (2018) Antichagasic, leishmanicidal, and trichomonacidal activity of 2-benzyl-5-nitroindazole-derived amines. ChemMedChem 13:1246–1259

    Article  CAS  Google Scholar 

  • Francisco AF, Jayawardhana S, Lewis MD, Taylor MC, Kelly JM (2017) Biological factors that impinge on Chagas disease drug development. Parasitology 144:1871–1880

    Article  Google Scholar 

  • Gascón J, Bern C, Pinazo MJ (2010) Chagas disease in Spain, United States and other non-endemic countries. Acta Trop 115:22–27

    Article  Google Scholar 

  • Gómez-Barrio A, Montero-Pereira D, Nogal-Ruiz JJ, Escario JA, Muelas-Serrano S, Kouznetsov VV, Méndez LYV, Gonzáles JMU, Ochoa C (2006) Antiparasitic properties of homoallylamines and related compounds. Acta Parasitol 51:73–78

    Article  Google Scholar 

  • Guedes PMM, Veloso VM, Tafuri WL, Galvão LMC, Carneiro CM, Lana M, Chiari E, Ataide Soares K, Bahia MT (2002) The dog as model for chemotherapy of the Chagas’ disease. Acta Trop 84:9–17

    Article  CAS  Google Scholar 

  • Guedes PMM, Silva GK, Gutiérrez FRS, Silva JS (2011) Current status of Chagas disease chemotherapy. Expert Rev Anti-Infect Ther 9:609–620

    Article  Google Scholar 

  • Guedes PMM, Veloso VM, Mineo TWP, Santiago-Silva J, Crepalde G, Caldas IS, Nascimento MSL, Lana M, Chiari E, Galvão LMC, Bahia MT (2012) Hematological alterations during experimental canine infection by Trypanosoma cruzi. Rev Bras Parasitol Vet 21(2):151–156

    Article  Google Scholar 

  • Hashimoto M, Morales J, Uemura H, Mikoshiba K, Nara T (2015) A novel method for inducing amastigote-to-trypomastigote transformation in vitro in Trypanosoma cruzi reveals the importance of inositol 1,4,5-trisphosphate receptor. PLoS One 10:e0135726. https://doi.org/10.1371/journal.pone.0135726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henriques C, Henriques-Pons A, Meuser-Batista M, Ribeiro AS, de Souza W (2014) In vivo imaging of mice infected with bioluminescent Trypanosoma cruzi unveils novel sites of infection. Parasit Vectors 7:89. https://doi.org/10.1186/1756-3305-7-89

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudock MP, Sanz-Rodríguez CE, Song Y, Chan JMW, Zhang Y, Odeh S, Kosztowski T, Leon-Rossell A, Concepción JL, Yardley V, Croft SL, Urbina JA, Oldfield E (2006) Inhibition of Trypanosoma cruzi hexokinase by bisphosphonates. J Med Chem 49:215–223

    Article  CAS  Google Scholar 

  • Keenan M, Chaplin JH, Alexander PW, Abbott MJ, Best WM, Khong A, Botero A, Pérez C, Cornwal S, Thompson RA, White KL, Shackleford DM, Koltun M, Chiu FCK, Morizzi J, Ryan E, Campbell M, von Geldern TW, Scandale I, Chatelain E, Charman SA (2013) Two analogues of fenarimol show curative activity in an experimental model of Chagas disease. J Med Chem 56:10158–10170

    Article  CAS  Google Scholar 

  • Kessler RL, Gradia DF, Pontello Rampazzo RC, Lourenco ÉE, Fidêncio NJ, Manhaes L, Probst CM, Ávila AR, Fragoso SP (2013) Stage-regulated GFP expression in Trypanosoma cruzi: applications from host-parasite interactions to drug screening. PLoS One 8:e67441. https://doi.org/10.1371/journal.pone.0067441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khabnadideh S, Pez D, Musso A, Brun R, Ruiz Pérez LM, González-Pacanowska D, Gilbert IH (2005) Design, synthesis and evaluation of 2,4-diaminoquinazolines as inhibitors of trypanosomal and leishmanial dihydrofolate reductase. Bioorg Med Chem 13:2637–2649

    Article  CAS  Google Scholar 

  • Lavorato SN, Sales Júnior PA, Murta SMF, Romanha AJ, Alves RJ (2015) In vitro activity of 1,3-bisaryloxypropanamines against Trypanosoma cruzi-infected L929 cultures. Mem Inst Oswaldo Cruz 110:566–568

    Article  CAS  Google Scholar 

  • Le-Senne A, Muelas-Serrano S, Fernández-Portillo C, Escario JA, Gómez-Barrio A (2002) Biological characterization of a β-galactosidase expressing clone of Trypanosoma cruzi CL strain. Mem Inst Oswaldo Cruz 97:1101–1105

    Article  Google Scholar 

  • Lewis MD, Francisco AF, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA, Kelly JM (2014) Bioluminescence imaging of chronic Trypanosoma cruzi infections reveals tissue specific parasite dynamics and heart disease in the absence of locally persistent infection. Cell Microbiol 16:1285–1300

    Article  CAS  Google Scholar 

  • Lewis MD, Francisco AF, Taylor MC, Kelly JM (2015) A new experimental model for assessing drug efficacy against Trypanosoma cruzi infection based on highly sensitive in vivo imaging. J Biomol Screen 20:36–43

    Article  Google Scholar 

  • Lipnick RL, Cotruvo JA, Hill RN, Bruce RD, Stitzel KA, Walker AP, Chu I, Goddard M, Segal L, Springer JA, Myers RC (1995) Comparison of the up-and-down, conventional LD50, and fixed-dose acute toxicity procedures. Food Chem Toxicol 33:223–231

    Article  CAS  Google Scholar 

  • Martínez-Díaz RA, Escario JA, Nogal-Ruiz JJ, Gómez-Barrio A (2001) Biological characterization of Trypanosoma cruzi strains. Mem Inst Oswaldo Cruz 96:53–59

    Article  Google Scholar 

  • Méndez-Lucio O, Pérez-Villanueva J, Romo-Mancillas A, Castillo R (2011) 3D-QSAR studies on purine-carbonitriles as cruzain inhibitors: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Med Chem Commun 2:1058–1065

    Article  Google Scholar 

  • Miguel DC, Ferraz ML, Alves RO, Yokoyama-Yasunaka JKU, Torrecilhas AC, Romanha AJ, Uliana SR (2010) The anticancer drug tamoxifen is active against Trypanosoma cruzi in vitro but ineffective in the treatment of the acute phase of Chagas disease in mice. Mem Inst Oswaldo Cruz 105:945–948

    Article  CAS  Google Scholar 

  • Miranda CG, Solana ME, Curto ML, Lammel EM, Schijman AG, Alba Soto CD (2015) A flow cytometer-based method to simultaneously assess activity and selectivity of compounds against the intracellular forms of Trypanosoma cruzi. Acta Trop 152:8–16

    Article  CAS  Google Scholar 

  • Montero-Torres A, Vega MC, Marrero-Ponce Y, Rolón M, Gómez-Barrio A, Escario JA, Arán VJ, Martínez-Fernández AR, Meneses-Marcel A (2005) A novel non-stochastic quadratic fingerprints-based approach for the 'in silico' discovery of new antitrypanosomal compounds. Bioorg Med Chem 13:6264–6275

    Article  CAS  Google Scholar 

  • Moraes CB, Giardini MA, Kim H, Franco CH, Araujo-Junior AM, Schenkman S, Chatelain E, Freitas-Junior LH (2014) Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for Chagas disease drug discovery and development. Sci Rep 4:4703. https://doi.org/10.1038/srep04703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muelas S, di Maio R, Cerecetto H, Seoane G, Ochoa C, Escario JA, Gómez-Barrio A (2001) New thiadiazine derivatives with activity against Trypanosoma cruzi amastigotes. Folia Parasitol (Praha) 48:105–108

    Article  CAS  Google Scholar 

  • Muelas S, Suárez M, Pérez R, Rodríguez H, Ochoa C, Escario JA, Gómez-Barrio A (2002) In vitro and in vivo assays of 3,5-disubstituted-tetrahydro-2H-1,3,5-thiadiazin-2-thione derivatives against Trypanosoma cruzi. Mem Inst Oswaldo Cruz 97:269–272

    Article  CAS  Google Scholar 

  • Muelas-Serrano S, Nogal-Ruiz JJ, Gómez-Barrio A (2000) Setting of a colorimetric method to determine the viability of Trypanosoma cruzi epimastigotes. Parasitol Res 86:999–1002

    Article  CAS  Google Scholar 

  • Muro B, Reviriego F, Navarro P, Marín C, Ramírez-Macías I, Rosales MJ, Sánchez-Moreno M, Arán VJ (2014) New perspectives on the synthesis and antichagasic activity of 3-alkoxy-1-alkyl-5-nitroindazoles. Eur J Med Chem 74:124–134

    Article  CAS  Google Scholar 

  • Nefertiti ASG, Batista MM, da Silva PB, Torres-Santos EC, Cunha-Júnior EF, Green J, Kumar A, Faharat AA, Boykin DW, Soeiro MNC (2017) Anti-parasitic effect of novel amidines against Trypanosoma cruzi: phenotypic and in silico absorption, distribution, metabolism, excretion and toxicity analysis. Parasitology Open 3:e5. https://doi.org/10.1017/pao.2017.5

    Article  Google Scholar 

  • Nefertiti ASG, Batista MM, da Silva PB, Batista DGJ, da Silva CF, Peres RB, Torres-Santos EC, Cunha-Junior EF, Holt E, Boykin DW, Brun R, Wenzler T, Soeiro MNC (2018) In vitro and in vivo studies of the trypanocidal effect of novel quinolines. Antimicrob Agents Chemother 62. https://doi.org/10.1128/AAC.01936-17

  • Olmo F, Gómez-Contreras F, Navarro P, Marín C, Yunta MJ, Cano C, Campayo L, Martín-Oliva D, Rosales MJR, Sánchez-Moreno M (2015) Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur J Med Chem 106:106–119

    Article  CAS  Google Scholar 

  • Pinazo MJ, Gascón J (2015) The importance of the multidisciplinary approach to deal with the new epidemiological scenario of Chagas disease (global health). Acta Trop 151:16–20

    Article  Google Scholar 

  • Pizzo C, Saiz C, Talevi A, Gavernet L, Palestro P, Bellera C, Blanch LB, Benítez D, Cazzulo JJ, Chidichimo A, Wipf P, Mahler S (2011) Synthesis of 2-hydrazolyl-4-thiazolidinones based on multicomponent reactions and biological evaluation against Trypanosoma cruzi. Chem Biol Drug Des 77:166–172

    Article  CAS  Google Scholar 

  • Planer JD, Hulverson MA, Arif JA, Ranade RM, Don R, Buckner FS (2014) Synergy testing of FDA-approved drugs identifies potent drug combinations against Trypanosoma cruzi. PLoS Negl Trop Dis 8:e2977. https://doi.org/10.1371/journal.pntd.0002977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassi A Jr, Rassi A, Marin-Neto JA (2010) Chagas disease. Lancet 375:1388–1402

    Article  Google Scholar 

  • Rodríguez J, Gerpe A, Aguirre G, Kemmerling U, Piro OE, Arán VJ, Maya JD, Olea-Azar C, González M, Cerecetto H (2009) Study of 5-nitroindazoles’ anti-Trypanosoma cruzi mode of action: electrochemical behaviour and ESR spectroscopic studies. Eur J Med Chem 44:1545–1553

    Article  Google Scholar 

  • Roldos V, Nakayama H, Rolón M, Montero-Torres A, Trucco F, Torres S, Vega C, Marrero-Ponce Y, Heguaburu V, Yaluff G, Gómez-Barrio A, Sanabria L, Ferreira ME, Rojas de Arias A, Pandolfi E (2008) Activity of a hydroxybibenzyl bryophyte constituent against Leishmania spp. and Trypanosoma cruzi: in silico, in vitro and in vivo activity studies. Eur J Med Chem 43:1797–1807

    Article  CAS  Google Scholar 

  • Rolón M, Vega C, Escario JA, Gómez-Barrio A (2006a) Development of resazurin microtiter assay for drug sensibility testing of Trypanosoma cruzi epimastigotes. Parasitol Res 99:103–107

    Article  Google Scholar 

  • Rolón M, Seco EM, Vega C, Nogal JJ, Escario JA, Gómez-Barrio A, Malpartida F (2006b) Selective activity of polyene macrolides produced by genetically modified Streptomyces on Trypanosoma cruzi. Int J Antimicrob Agents 28:104–109

    Article  Google Scholar 

  • Romanha AJ, de Castro SL, Soeiro MNC, Lannes-Vieira J, Ribeiro I, Talvani A, Bourdin B, Blum B, Olivieri B, Zani C, Spadafora C, Chiari E, Chatelain E, Chaves G, Calzada JE, Bustamante JM, Freitas-Junior LH, Romero LI, Bahia MT, Lotrowska M, Soares M, Andrade SG, Armstrong T, Degrave W, Andrade ZA (2010) In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105:233–238

    Article  CAS  Google Scholar 

  • Salas C, Tapia RA, Ciudad K, Armstrong V, Orellana M, Kemmerling U, Ferreira J, Maya JD, Morello A (2008) Trypanosoma cruzi: activities of lapachol and α- and β-lapachone derivatives against epimastigote and trypomastigote forms. Bioorg Med Chem 16:668–674

    Article  CAS  Google Scholar 

  • Salomão K, de Santana NA, Molina MT, de Castro SL, Menna-Barreto RFS (2013) Trypanosoma cruzi mitochondrial swelling and membrane potential collapse as primary evidence of the mode of action of naphthoquinone analogues. BMC Microbiol 13:196. https://doi.org/10.1186/1471-2180-13-196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santa-Rita RM, Barbosa HS, de Castro SL (2006) Ultrastructural analysis of edelfosine-treated trypomastigotes and amastigotes of Trypanosoma cruzi. Parasitol Res 100:187–190

    Article  CAS  Google Scholar 

  • Santos FM, Lima WG, Gravel AS, Martins TAF, Talvani A, Torres RM, Bahia MT (2012) Cardiomyopathy prognosis after benznidazole treatment in chronic canine Chagas’ disease. J Antimicrob Chemother 67:1987–1995

    Article  CAS  Google Scholar 

  • Saraiva J, Vega C, Rolón M, da Silva R, Andrade e Silva ML, Donate PM, Bastos JK, Gómez-Barrio A, de Albuquerque S (2007) In vitro and in vivo activity of lignan lactones derivatives against Trypanosoma cruzi. Parasitol Res 100:791–795

    Article  Google Scholar 

  • Soeiro MNC, de Souza EM, da Silva CF, Batista DGJ, Batista MM, Pavão BP, de Araújo JS, Fortes Aiub CA, da Silva PB, Lionel J, Britto C, Kim K, Sulikowski G, Hargrove TY, Waterman MR, Lepesheva GI (2013) In vitro and in vivo studies of the antiparasitic activity of sterol 14α-demethylase (CYP51) inhibitor VNI against drug-resistant strains of Trypanosoma cruzi. Antimicrob Agents Chemother 57:4151–4163

    Article  CAS  Google Scholar 

  • Steverding D (2014) The history of Chagas disease. Parasit Vectors 7:317. https://doi.org/10.1186/1756-3305-7-317

    Article  PubMed  PubMed Central  Google Scholar 

  • Sykes ML, Avery VM (2013) Approaches to protozoan drug discovery: phenotypic screening. J Med Chem 56:7727–7740

    Article  CAS  Google Scholar 

  • Talevi A, Bruno-Blanch LE (2009) Screening virtual: una herramienta eficaz para el desarrollo de nuevos fármacos en Latinoamérica. Lat Am J Pharm 28:141–150

    CAS  Google Scholar 

  • Teixeira AR, Nascimento RJ, Sturm NR (2006) Evolution and pathology in Chagas disease—a review. Mem Inst Oswaldo Cruz 101:463–491

    Article  Google Scholar 

  • Timm BL, da Silva PB, Batista MM, da Silva FHG, da Silva CF, Tidwell RR, Patrick DA, Jones SK, Bakunov SA, Bakunova SM, Soeiro MNC (2014) In vitro and in vivo biological effects of novel arylimidamide derivatives against Trypanosoma cruzi. Antimicrob Agents Chemother 58:3720–3726

    Article  Google Scholar 

  • Tomlinson S, Vandekerckhove F, Frevert U, Nussenzweig V (1995) The induction of Trypanosoma cruzi trypomastigote to amastigote transformation by low pH. Parasitology 110:547–554

    Article  Google Scholar 

  • Vega C, Rolón M, Martínez-Fernández AR, Escario JA, Gómez-Barrio A (2005) A new pharmacological screening assay with Trypanosoma cruzi epimastigotes expressing β-galactosidase. Parasitol Res 95:296–298

    Article  CAS  Google Scholar 

  • Vega MC, Montero-Torres A, Marrero-Ponce Y, Rolón M, Gómez-Barrio A, Escario JA, Arán VJ, Nogal JJ, Meneses-Marcel A, Torrens F (2006) New ligand-based approach for the discovery of antitrypanosomal compounds. Bioorg Med Chem Lett 16:1898–1904

    Article  CAS  Google Scholar 

  • Vega MC, Rolón M, Montero-Torres A, Fonseca-Berzal C, Escario JA, Gómez-Barrio A, Gálvez J, Marrero-Ponce Y, Arán VJ (2012) Synthesis, biological evaluation and chemometric analysis of indazole derivatives. 1,2-Disubstituted 5-nitroindazolinones, new prototypes of antichagasic drug. Eur J Med Chem 58:214–227

    Article  CAS  Google Scholar 

  • Veiga-Santos P, Desoti VC, Miranda N, Ueda-Nakamura T, Dias-Filho BP, Silva SO, García Cortez DA, de Mello JCP, Nakamura CV (2013) The natural compounds piperovatine and piperlonguminine induce autophagic cell death on Trypanosoma cruzi. Acta Trop 125:349–356

    Article  CAS  Google Scholar 

  • Verma J, Khedkar VM, Coutinho EC (2010) 3D-QSAR in drug design—a review. Curr Top Med Chem 10:95–115

    Article  CAS  Google Scholar 

  • Vieira DF, Choi JY, Calvet CM, Siqueira-Neto JL, Johnston JB, Kellar D, Gut J, Cameron MD, McKerrow JH, Roush WR, Podust LM (2014) Binding mode and potency of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors targeting Trypanosoma cruzi CYP51. J Med Chem 57:10162–10175

    Article  CAS  Google Scholar 

  • Villalta F, Dobish MC, Nde PN, Kleshchenko YY, Hargrove TY, Johnson CA, Waterman MR, Johnston JN, Lepesheva GI (2013) VNI cures acute and chronic experimental Chagas disease. J Infect Dis 208:504–511

    Article  CAS  Google Scholar 

  • Walum E (1998) Acute oral toxicity. Environ Health Perspect 106(Suppl. 2):497–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053

    Article  CAS  Google Scholar 

  • Wong-Baeza C, Nogueda-Torres B, Serna M, Meza-Toledo S, Baeza I, Wong C (2015) Trypanocidal effect of the benzyl ester of N-propyl oxamate: a bi-potential prodrug for the treatment of experimental Chagas disease. BMC Pharmacol Toxicol 16:10. https://doi.org/10.1186/s40360-015-0010-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2015) Investing to overcome the global impact of neglected tropical diseases, third WHO report on neglected tropical diseases. Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2017) Integrating neglected tropical diseases into global health and development. Fourth WHO report on neglected tropical diseases. Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva

    Google Scholar 

  • Zingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, Guhl F, Lages-Silva E, Macedo AM, Machado CR, Miles MA, Romanha AJ, Sturm NR, Tibayrenc M, Schijman AG (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz 104:1051–1054

    Article  CAS  Google Scholar 

  • Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MMG, Schijman AG, Llewellyn MS, Lages-Silva E, Machado CR, Andrade SG, Sturm NR (2012) The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol 12:240–253

    Article  Google Scholar 

  • Zuccotto F, Martin ACR, Laskowski RA, Thornton JM, Gilbert IH (1998) Dihydrofolate reductase: a potential drug target in trypanosomes and leishmania. J Comput Aided Mol Des 12:241–257

    Article  CAS  Google Scholar 

Download references

Funding

The authors thank the Spanish Ministry of Economy, Industry and Competitiveness (MINEICO, ref. SAF2015-66690-R) and the 911120 UCM-CEI Moncloa Research Group “Terapia Antiparasitaria.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Fonseca-Berzal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: Kevin S.W. Tan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca-Berzal, C., Arán, V.J., Escario, J.A. et al. Experimental models in Chagas disease: a review of the methodologies applied for screening compounds against Trypanosoma cruzi. Parasitol Res 117, 3367–3380 (2018). https://doi.org/10.1007/s00436-018-6084-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-6084-3

Keywords

Navigation