Skip to main content
Log in

The effects of raw propolis on Varroa-infested honey bee (Apis mellifera) workers

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Self-medication plays a major role in the behavioral defense against pathogens and parasites that animals have developed during evolution. The conditions defining this adaptive behavior are: (1) contact with the substance in question must be deliberate; (2) the substance must be detrimental to one or more parasites; (3) the detrimental effect on parasites must lead to increased host fitness. Recent studies have shown that A. mellifera colonies are able to increase resin foraging rates when infested by V. destructor, whereas further investigations are needed for evidence of parasite and host fitness. In order to understand whether Varroa-infested colonies could benefit from increasing levels of resin, we carried out laboratory bioassays to investigate the effects of propolis on the fitness of infested workers. The longevity and energetic stress of adult bees kept in experimental cages and artificially infested with the mite were thus monitored over time. At the same time, in vitro experiments were performed to study the contact effects of crude propolis on Varroa mites. Our results clearly demonstrate the positive effects of raw propolis on the lifespan of Varroa-infested adult bees. A low narcoleptic effect (19–22%) of raw propolis on phoretic mites after 5 h was also observed. In terms of energetic stress, we found no differences between Varroa-free and Varroa-infested bees in terms of the daily sucrose solution demand. Our findings seem to confirm the hypothesis that resin collection and propolis use in the hive represent an example of self-medication behavior in social insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alaux C, Allier F, Decourtye A, Odoux JF, Tamic T, Chabirand M, Henry M (2017) A “landscape physiology” approach for assessing bee healt highlights the benefits of floral landscape enrichment and semi-natural habitats. Sci Rep 7:40568. https://doi.org/10.1038/srep40568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amdam GV, Omholt SW (2002) The regulatory anatomy of honeybee lifespan. J Theor Biol 216(2):209–228

    Article  Google Scholar 

  • Ball BV, Allen MF (1988) The prevalence of pathogens in honey bee (Apis mellifera) colonies infested with the parasitic mite Varroa jacobsoni. Ann Appl Biol 113(2):237–244

    Article  Google Scholar 

  • Bartoń K (2018) MuMIn: Multi-Model Inference. R package version 1.40.4. https://CRAN.R-project.org/package=MuMIn

  • Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  • Borba RS (2015) Constitutive and therapeutic benefits of plant resins and a propolis envelope to honey bee, Apis mellifera L., immunity and health. Ph.D. thesis, University of Minnesota, Ann Arbor, MA, USA

  • Borba RS, Spivak M (2017) Propolis envelope in Apis mellifera colonies supports honey bees against the pathogen, Paenibacillus larvae. Sci Rep 7:11429. https://doi.org/10.1038/s41598-017-11689-w6

    Article  PubMed  PubMed Central  Google Scholar 

  • Borba RS, Klyczek KK, Mogen KL, Spivak M (2015) Seasonal benefits of a natural propolis envelope to honey bee immunity and colony health. J Exp Biol 218(22):3689–3699

    Article  Google Scholar 

  • Clayton DH, Wolfe ND (1993) The adaptive significance of self-medication. Trends Ecol Evol 8(2):60–63

    Article  CAS  Google Scholar 

  • Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, vanEngelsdorp D, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318(5848):283–287

    Article  CAS  Google Scholar 

  • Cremer S, Armitage SA, Schmid-Hempel P (2007) Social immunity. Curr Biol 17(16):R693–R702

    Article  CAS  Google Scholar 

  • Cremer S, Pull CD, Fürst MA (2018) Social immunity: emergence and evolution of colony-level disease protection. Annu Rev Entomol 63:105–123

    Article  CAS  Google Scholar 

  • da Silva JFM, de Souza MC, Matta SR, de Andrade MR, Vidal FVN (2006) Correlation analysis between phenolic levels of Brazilian propolis extracts and their antimicrobial and antioxidant activities. Food Chem 99(3):431–435

    Article  Google Scholar 

  • Damiani N, Fernández NJ, Maldonado LM, Álvarez AR, Eguaras MJ, Marcangeli JA (2010) Bioactivity of propolis from different geographical origins on Varroa destructor (Acari: Varroidae). Parasitol Res 107(1):31–37

    Article  Google Scholar 

  • de Roode JC, Lefèvre T, Hunter MD (2013) Self-medication in animals. Science 340(6129):150–151

    Article  Google Scholar 

  • Drescher N, Klein AM, Neumann P, Yañez O, Leonhardt SD (2017) Inside honeybee hives: impact of natural propolis on the ectoparasitic mite Varroa destructor and viruses. Insects 8(1):15

    Article  Google Scholar 

  • Erler S, Moritz RF (2016) Pharmacophagy and pharmacophory: mechanisms of self-medication and disease prevention in the honeybee colony (Apis mellifera). Apidologie 47(3):389–411

    Article  CAS  Google Scholar 

  • Evans JD, Pettis JS (2005) Colony-level impacts of immune responsiveness in honey bees, Apis mellifera. Evolution 59(10):2270–2274

    Article  CAS  Google Scholar 

  • Garcia RC, Oliveira NTED, Camargo SC, Pires BG, Oliveira CALD, Teixeira RDA, Pickler MA (2013) Honey and propolis production, hygiene and defense behaviors of two generations of Africanized honey bees. Sci Agric 70(2):74–81

    Article  Google Scholar 

  • Garedew A, Lamprecht I, Schmolz E, Schricker B (2002) The varroacidal action of propolis: a laboratory assay. Apidologie 33(1):41–50

    Article  Google Scholar 

  • Garedew A, Schmolz E, Lamprecht I (2003) Microcalorimetric and respirometric investigation of the effect of temperature on the antiVarroa action of the natural bee product-propolis. Thermochim Acta 399(1–2):171–180

    Article  CAS  Google Scholar 

  • Higes M, Meana A, Bartolomé C, Botías C, Martín-Hernández R (2013) Nosema ceranae (microsporidia), a controversial 21st century honey bee pathogen. Environ Microbiol Rep 5(1):17–29

    Article  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biom J 50(3):346–363

    Article  Google Scholar 

  • Lozano GA (1998) Parasitic stress and self-medication in wild animals, in advances in the study behavior. In: Møller AP, Milinski M, Slater PJB (eds) Stress and behavior, vol 27. Academic, Cambridge, pp 291–317

    Chapter  Google Scholar 

  • Macedo PA, Wu J, Ellis MD (2002) Using inert dusts to detect and assess varroa infestations in honey bee colonies. J Apic Res 41(1–2):3–7

    Article  Google Scholar 

  • Manrique AJ, Soares EEA (2002) Início de um programa de seleção de abelhas africanizadas para a melhoria na produção de própolis e seu efeito na produção de mel. Interciencia 27(6):312–316

    Google Scholar 

  • Marcucci MC (1995) Propolis: chemical composition, biological properties and therapeutic activity. Apidologie 26(2):83–99

    Article  CAS  Google Scholar 

  • Martin SJ (2001) The role of Varroa and viral pathogens in the collapse of honeybee colonies: a modelling approach. J Appl Ecol 38(5):1082–1093

    Article  Google Scholar 

  • Martín-Hernández R, Botías C, Barrios L, Martínez-Salvador A, Meana A, Mayack C, Higes M (2011) Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitol Res 109(3):605–612

    Article  Google Scholar 

  • Mattila HR, Harris JL, Otis GW (2001) Timing of production of winter bees in honey bee (Apis mellifera) colonies. Insect Soc 48:88–93

    Article  Google Scholar 

  • Mayack C, Naug D (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol 100(3):185–188

    Article  Google Scholar 

  • Mazzei M, Carrozza ML, Luisi E, Forzan M, Giusti M, Sagona S, Tolari F, Felicioli A (2014) Infectivity of DWV associated to flower pollen: experimental evidence of a horizontal transmission route. PLoS One 9(11):e113448

    Article  Google Scholar 

  • Mihai CM, Mărghitaş LA, Dezmirean DS, Chirilă F, Moritz RF, Schlüns H (2012) Interactions among flavonoids of propolis affect antibacterial activity against the honeybee pathogen Paenibacillus larvae. J Invertebr Pathol 110(1):68–72

    Article  CAS  Google Scholar 

  • Milani N (1995) The resistance of Varroa jacobsoni oud to pyrethroids: a laboratory assay. Apidologie 26(5):415–429

    Article  CAS  Google Scholar 

  • Nakamura J, Seeley TD (2006) The functional organization of resin work in honey bee colonies. Behav Ecol Sociobiol 60:339–349

    Article  Google Scholar 

  • Nazzi F, Brown SP, Annoscia D, Del Piccolo F, Di Prisco G et al (2012) Synergistic parasite-pathogen interactions mediated by host immunity can drive the collapse of honeybee colonies. PLoS Pathog 8(6):e1002735

    Article  CAS  Google Scholar 

  • Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49(1):1–6

    Article  Google Scholar 

  • Nicodemo D, De Jong D, Couto RHN, Malheiros B (2013) Honey bee lines selected for high propolis production also have superior hygienic behavior and increased honey and pollen stores. Genet Mol Res 12:6931–6938

    Article  CAS  Google Scholar 

  • Nicodemo D, Malheiros EB, De Jong D (2014) Increased brood viability and longer lifespan of honeybees selected for propolis production. Apidologie 45(2):269–275

    Article  CAS  Google Scholar 

  • Padilha AH, Sattler A, Cobuci JA, McManus CM (2013) Genetic parameters for five traits in Africanized honeybees using Bayesian inference. Genet Mol Biol 36(2):207–213

    Article  Google Scholar 

  • Pappas N, Thrasyvoulou A (1988) Searching for an accurate method to evaluate the degree of Varroa infestation in honeybee colonies. European research on varroatosis control, Commission of the European Communities, Rotterdam, pp 85–92

    Google Scholar 

  • Pellati F, Orlandini G, Pinetti D, Benvenuti S (2011) HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts. J Pharm Biomed Anal 55(5):934–948

    Article  CAS  Google Scholar 

  • Popova M, Reyes M, Le Conte Y, Bankova V (2014) Propolis chemical composition and honeybee resistance against Varroa destructor. Nat Prod Res 28(11):788–794

    Article  CAS  Google Scholar 

  • Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE (2010) Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol 25(6):345–353

    Article  Google Scholar 

  • Pusceddu M, Piluzza G, Theodorou P, Buffa F, Ruiu L, Bullitta S, Floris I, Satta A (2017) Resin foraging dynamics in Varroa destructor infested hives. A case of medication of kin? Insect Sci. https://doi.org/10.1111/1744-7917.12515

  • R Core Team (2017) R: a language and environment for statistical computing. Available from https://www.R-project.org/

  • Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119

    Article  Google Scholar 

  • Simone M, Evans JD, Spivak M (2009) Resin collection and social immunity in honey bees. Evolution 63(11):3016–3022

    Article  CAS  Google Scholar 

  • Simone-Finstrom M, Spivak M (2010) Propolis and bee health: the natural history and significance of resin use by honey bees. Apidologie 41(3):295–311

    Article  Google Scholar 

  • Simone-Finstrom MD, Spivak M (2012) Increased resin collection after parasite challenge: a case of self-medication in honey bees? PLoS One 7(3):e34601

    Article  CAS  Google Scholar 

  • Simone-Finstrom M, Borba RS, Wilson M, Spivak M (2017) Propolis counteracts some threats to honey bee health. Insects 8(2):46

    Article  Google Scholar 

  • Singer MS, Mace KC, Bernays EA (2009) Self-medication as adaptive plasticity: increased ingestion of plant toxins by parasitized caterpillars. PLoS One 4(3):e4796

    Article  Google Scholar 

  • Siripatrawan U, Vitchayakitti W, Sanguandeekul R (2013) Antioxidant and antimicrobial properties of Thai propolis extracted using ethanol aqueous solution. Int J Food Sci Technol 48(1):22–27

    Article  CAS  Google Scholar 

  • Smart M, Pettis J, Rice N, Browning Z, Spivak M (2016) Linking measures of Colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS One 11(3):e0152685

    Article  Google Scholar 

  • Tentcheva D, Gauthier L, Zappulla N, Dainat B, Cousserans F, Colin ME, Bergoin M (2004) Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France. Appl Environ Microbiol 70(12):7185–7191

    Article  CAS  Google Scholar 

  • Therneau TM (2015) coxme: mixed effects cox models. R package version 2.2–5. https://CRAN.R-project.org/package=coxme

  • Therneau TM, Grambsch PM (2000) Modeling survival data extending the cox model. Springer, New York ISBN 0-387-98784-3

    Book  Google Scholar 

  • Williams GR, Alaux C, Costa C, Csáki T, Doublet V, Eisenhardt D, Fries I, Kuhn R, McMahon DP, Medrzycki P, Murray TE, Natsopoulou ME, Neumann P, Oliver R, Paxton RJ, Pernal SF, Shutler D, Tanner G, van der Steen JJM, Brodschneider R (2013) Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J Apic Res 52(1):1–36

    Article  Google Scholar 

  • Yue C, Genersch E (2005) RT-PCR analysis of deformed wing virus in honeybees (Apis mellifera) and mites (Varroa destructor). J Gen Virol 86(12):3419–3424

    Article  CAS  Google Scholar 

  • Yue C, Schröder M, Gisder S, Genersch E (2007) Vertical-transmission routes for deformed wing virus of honeybees (Apis mellifera). J Gen Virol 88(8):2329–2336

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Regione Autonoma della Sardegna for the financial support of Alessandra Mura’s PhD scholarship, P.O.R. Sardegna F.S.E. 2014/2020 Asse III- Istruzione e formazione–Obiettivo tematico 10 “Investire nell’istruzione e nella formazione professionale per le competenze e l’apprendimento permanente”.

The authors are also grateful to Angela Milia and Gavino Tutedde for the technical support provided in the laboratory experiments.

Funding

This study was financially supported by the Italian Ministry of Education, University and Research (MIUR; 2012RCEZWH), “Social immunity in honeybee: behavioral, chemical and microbiological aspects.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignazio Floris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pusceddu, M., Floris, I., Mura, A. et al. The effects of raw propolis on Varroa-infested honey bee (Apis mellifera) workers. Parasitol Res 117, 3527–3535 (2018). https://doi.org/10.1007/s00436-018-6050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-6050-0

Keywords

Navigation