Skip to main content

Advertisement

Log in

α-Tocopheryl succinate-suppressed development of cerebral malaria in mice

  • Original Article
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

α-Tocopheryl succinate (α-TOS), a derivative of vitamin E, is synthesized by esterification of α-tocopherol. It has been reported that α-TOS inhibits the mitochondrial complex II resulting in generation of reactive oxygen species, which triggers selective apoptosis in a large number of cancer cells, while it appears largely non-toxic towards normal cells. Plasmodium parasites are well known to have high sensitivity to oxidative stress. Thus, α-TOS is suspected to impact Plasmodium parasites by oxidative stress. In this study, to ascertain whether α-TOS is an appropriate candidate for an anti-malarial drug, C57BL/6J mice were infected with P. yoelii 17XL and P. berghei ANKA, a lethal strain of rodent malaria and experimental cerebral malaria (ECM), and treated with several concentrations of α-TOS by intraperitoneal administration on 1, 3, 5, and 7 days post infection (dpi). In addition, the permeability of the blood brain barrier (BBB) was examined by Evans blue staining in ECM on 7 dpi. As a result of α-TOS treatment, parasitemia was decreased and survival rate was significantly increased in mice infected with both parasites. Furthermore, the intensity of Evans blue staining on brains taken from α-TOS-treated mice was weaker than that of untreated mice. This means that α-TOS might inhibit the breakdown of BBB and progress of cerebral malaria. These findings indicate that vitamin E derivatives like α-TOS might be a potential candidate for treatment drugs against malaria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Becker K, Tilley L, Vennerstrom JL, Roberts D, Rogerson S, Ginsburg H (2004) Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. Int J Parasitol 34:163–189

    Article  CAS  PubMed  Google Scholar 

  • Bellezza I, Grottelli S, Gatticchi L, Mierla AL, Minelli A (2014) α-Tocopheryl succinate pre-treatment attenuates quinone toxicity in prostate cancer PC3 cells. Gene 539:1–7

    Article  CAS  PubMed  Google Scholar 

  • Cecchini G (2003) Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72:77–109

    Article  CAS  PubMed  Google Scholar 

  • Clark IA, Hunt NH (1983) Evidence for reactive oxygen intermediates causing hemolysis and parasite death in malaria. Infect Immun 39:1–6

    PubMed  PubMed Central  CAS  Google Scholar 

  • Dondorp AM, Kager PA, Vreeken J, White NJ (2000) Abnormal blood flow and red blood cell deformability in severe malaria. Parasitol Today 16:228–232

    Article  CAS  PubMed  Google Scholar 

  • Dong LF, Low P, Dyason JC, Wang XF, Prochazka L, Witting PK, Freeman R, Swettenham E, Valis K, Liu J, Zobalova R, Turanek J, Spitz DR, Domann FE, Scheffler IE, Ralph SJ, Neuzil J (2008) Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27:4324–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong LF, Freeman R, Liu J, Zobalova R, Marin-Hernandez A, Stantic M, Rohlena J, Valis K, Rodriguez-Enriquez S, Butcher B, Goodwin J, Brunk UT, Witting PK, Moreno-Sanchez R, Scheffler IE, Ralph SJ, Neuzil J (2009) Suppression of tumor growth in vivo by the mitocan alpha-tocopheryl succinate requires respiratory complex II. Clin Cancer Res 15:1593–1600

    Article  CAS  PubMed  Google Scholar 

  • Dunst J, Kamena F, Matuschewski K (2017) Cytokines and chemokines in cerebral malaria pathogenesis. Front Cell Infect Microbiol 7:324

    Article  PubMed  PubMed Central  Google Scholar 

  • Friedman MJ (1979) Oxidant damage mediates variant red cell resistance to malaria. Nature 280:245–247

    Article  CAS  PubMed  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Rutherford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  PubMed  Google Scholar 

  • Gogvadze V, Norberg E, Orrenius S, Zhivotovsky B (2010) Involvement of Ca2+ and ROS in alpha-tocopheryl succinate-induced mitochondrial permeabilization. Int J Cancer 127:1823–1832

    Article  CAS  PubMed  Google Scholar 

  • Haldar K, Murphy SC, Milner DA, Taylor TE (2007) Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annu Rev Pathol 2:217–249

    Article  CAS  PubMed  Google Scholar 

  • Herbas MS, Shichiri M, Ishida N, Kume A, Hagihara Y, Yoshida Y, Suzuki H (2015) Probucol-induced α-tocopherol deficiency protects mice against malaria infection. PLoS One 10:e0136014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hora R, Kapoor P, Thind KK, Mishra PC (2016) Cerebral malaria--clinical manifestations and pathogenesis. Metab Brain Dis 31:225–237

    Article  CAS  PubMed  Google Scholar 

  • Houh YK, Kim KE, Park S, Hur DY, Kim S, Kim D, Bang SI, Yang Y, Park HJ, Cho D (2017) The effects of artemisinin on the cytolytic activity of natural killer (NK) cells. Int J Mol Sci 18:1600

    Article  PubMed Central  Google Scholar 

  • Ishii T, Yasuda K, Akatsuka A, Hino O, Hartman PS, Ishii N (2005) A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res 65:203–209

    PubMed  CAS  Google Scholar 

  • Jacot D, Waller RF, Soldati-Favre D, MacPherson DA, MacRae JI (2016) Apicomplexan energy metabolism: carbon source promiscuity and the quiescence hyperbole. Trends Parasitol 32:56–70

    Article  CAS  PubMed  Google Scholar 

  • Kawazu S, Komaki-Yasuda K, Oku H, Kano S (2008) Peroxiredoxins in malaria parasites: parasitologic aspects. Parasitol Int 57:1–7

    Article  CAS  PubMed  Google Scholar 

  • Kitabchi AE, Wimalasena J (1982) Specific binding sites for D-alpha-tocopherol on human erythrocytes. Biochim Biophys Acta 684:200–206

    Article  CAS  PubMed  Google Scholar 

  • Krauth-Siegel RL, Bauer H, Schirmer RH (2005) Dithiol proteins as guardians of the intracellular redox milieu in parasites: old and new drug targets in trypanosomes and malaria-causing plasmodia. Angew Chem Int Ed Engl 44:690–715

    Article  CAS  PubMed  Google Scholar 

  • Krungkrai SR, Yuthavong Y (1987) The antimalarial action on Plasmodium falciparum of qinghaosu and artesunate in combination with agents which modulate oxidant stress. Trans R Soc Trop Med Hyg 81:710–714

    Article  CAS  PubMed  Google Scholar 

  • Kuban-Jankowska A, Sahu KK, Gorska-Ponikowska M, Tuszynski JA, Wozniak M (2017) Inhibitory activity of iron chelators ATA and DFO on MCF-7 breast cancer cells and phosphatases PTP1B and SHP2. Anticancer Res 37:4799–4806

    PubMed  Google Scholar 

  • Kume A, Herbas MS, Shichiri M, Ishida N, Suzuki H (2016a) Effect of anti-hyperlipidemia drugs on the alpha-tocopherol concentration and their potential for murine malaria infection. Parasitol Res 115:69–75

    Article  PubMed  Google Scholar 

  • Kume A, Anh DT, Shichiri M, Ishida N, Suzuki H (2016b) Probucol dramatically enhances dihydroartemisinin effect in murine malaria. Malar J 15:472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauer SA, Rathod PK, Ghori N, Haldar K (1997) A membrane network for nutrient import in red cells infected with the malaria parasite. Science 276:1122–1125

    Article  CAS  PubMed  Google Scholar 

  • Lauer S, VanWye J, Harrison T, McManus H, Samuel BU, Hiller NL, Mohandas N, Haldar K (2000) Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J 19:3556–3564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemarie A, Huc L, Pazarentzos E, Mahul-Mellier AL, Grimm S (2011) Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ 18:338–349

    Article  CAS  PubMed  Google Scholar 

  • Medana IM, Turner GD (2006) Human cerebral malaria and the blood-brain barrier. Int J Parasitol 36:555–568

    Article  CAS  PubMed  Google Scholar 

  • Medana IM, Chaudhri G, Chan-Ling T, Hunt NH (2001) Central nervous system in cerebral malaria: ‘innocent bystander’ or active participant in the induction of immunopathology? Immunol Cell Biol 79:101–120

    Article  CAS  PubMed  Google Scholar 

  • Meshnick SR, Yang YZ, Lima V, Kuypers F, Kamchonwongpaisan S, Yuthavong Y (1993) Iron-dependent free radical generation from the antimalarial agent artemisinin (qinghaosu). Antimicrob Agents Chemother 37:1108–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mignotte B, Vayssiere JL (1998) Mitochondria and apoptosis. Eur J Biochem 252:1–15

    Article  CAS  PubMed  Google Scholar 

  • Nakase I, Lai H, Singh NP, Sasaki T (2008) Anticancer properties of artemisinin derivatives and their targeted delivery by transferrin conjugation. Int J Pharm 354:28–33

    Article  CAS  PubMed  Google Scholar 

  • Neuzil J (2002) Alpha-tocopheryl succinate epitomizes a compound with a shift in biological activity due to pro-vitamin-to-vitamin conversion. Biochem Biophys Res Commun 293:1309–1313

    Article  CAS  PubMed  Google Scholar 

  • Neuzil J, Svensson I, Weber T, Weber C, Brunk UT (1999) Alpha-tocopheryl succinate-induced apoptosis in Jurkat T cells involves caspase-3 activation, and both lysosomal and mitochondrial destabilisation. FEBS Lett 445:295–300

    Article  CAS  PubMed  Google Scholar 

  • Neuzil J, Weber T, Schröder A, Lu M, Ostermann G, Gellert N, Mayne GC, Olejnicka B, Nègre-Salvayre A, Stícha M, Coffey RJ, Weber C (2001) Induction of cancer cell apoptosis by alpha-tocopheryl succinate: molecular pathways and structural requirements. FASEB J 15:403–415

    Article  CAS  PubMed  Google Scholar 

  • Neuzil J, Zhao M, Ostermann G, Sticha M, Gellert N, Weber C, Eaton JW, Brunk UT (2002) Alpha-tocopheryl succinate, an agent with in vivo anti-tumour activity, induces apoptosis by causing lysosomal instability. Biochem J 362:709–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguitragool W, Bokhari AA, Pillai AD, Rayavara K, Sharma P, Turpin B, Aravind L, Desai SA (2011) Malaria parasite clag3 genes determine channel-mediated nutrient uptake by infected red blood cells. Cell 145:665–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niikura M, Komatsuya K, Inoue SI, Matsuda R, Asahi H, Inaoka DK, Kita K, Kobayashi F (2017) Suppression of experimental cerebral malaria by disruption of malate:quinone oxidoreductase. Malar J 16:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Penet MF, Viola A, Confort-Gouny S, Le Fur Y, Duhamel G, Kober F, Ibarrola D, Izquierdo M, Coltel N, Gharib B, Grau GE, Cozzone PJ (2005) Imaging experimental cerebral malaria in vivo: significant role of ischemic brain edema. J Neurosci 25:7352–7358

    Article  CAS  PubMed  Google Scholar 

  • Pussinen PJ, Lindner H, Glatter O, Reicher H, Kostner GM, Wintersperger A, Malle E, Sattler W (2000) Lipoprotein-associated alpha-tocopheryl-succinate inhibits cell growth and induces apoptosis in human MCF-7 and HBL-100 breast cancer cells. Biochim Biophys Acta 1485:129–144

    Article  CAS  PubMed  Google Scholar 

  • Qian M, Sanders BG, Kline K (1996) RRR-alpha-tocopheryl succinate induces apoptosis in avian retrovirus-transformed lymphoid cells. Nutr Cancer 25:9–26

    Article  CAS  PubMed  Google Scholar 

  • Ricci JE, Waterhouse N, Green DR (2003) Mitochondrial functions during cell death, a complex (I-V) dilemma. Cell Death Differ 10:488–492

    Article  CAS  PubMed  Google Scholar 

  • Ricci C, Pastukh V, Leonard J, Turrens J, Wilson G, Schaffer D, Schaffer SW (2008) Mitochondrial DNA damage triggers mitochondrial-superoxide generation and apoptosis. Am J Physiol Cell Physiol 294:C413–C422

    Article  CAS  PubMed  Google Scholar 

  • Seeber F, Limenitakis J, Soldati-Favre D (2008) Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. Trends Parasitol 24:468–478

    Article  CAS  PubMed  Google Scholar 

  • Sinha K, Das J, Pal PB, Sil PC (2013) Oxidative stress: the mitochondria-dependent and mitochondria-independent pathways of apoptosis. Arch Toxicol 87:1157–1180

    Article  CAS  PubMed  Google Scholar 

  • Srivastava IK, Rottenberg H, Vaidya AB (1997) Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem 272:3961–3966

    Article  CAS  PubMed  Google Scholar 

  • Storm J, Müller S (2012) Lipoic acid metabolism of Plasmodium--a suitable drug target. Curr Pharm Des 18:3480–3489

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tamez PA, Bhattacharjee S, van Ooij C, Hiller NL, Llinás M, Balu B, Adams JH, Haldar K (2008) An erythrocyte vesicle protein exported by the malaria parasite promotes tubovesicular lipid import from the host cell surface. PLoS Pathog 4:e1000118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thumwood CM, Hunt NH, Clark IA, Cowden WB (1988) Breakdown of the blood-brain barrier in murine cerebral malaria. Parasitology 96:579–589

    Article  PubMed  Google Scholar 

  • Tirmenstein MA, Ge X, Elkins CR, Fariss MW (1999) Administration of the tris salt of alpha-tocopheryl hemisuccinate inactivates CYP2E1, enhances microsomal alpha-tocopherol levels and protects against carbon tetrachloride-induced hepatotoxicity. Free Radic Biol Med 26:825–835

    Article  CAS  PubMed  Google Scholar 

  • Tomic-Vatic A, Eytina J, Chapman J, Mahdavian E, Neuzil J, Salvatore BA (2005) Vitamin E amides, a new class of vitamin E analogues with enhanced proapoptotic activity. Int J Cancer 117:188–193

    Article  CAS  PubMed  Google Scholar 

  • Trivedi V, Srivastava K, Puri SK, Maulik PR, Bandyopadhyay U (2005) Purification and biochemical characterization of a heme containing peroxidase from the human parasite P. falciparum. Protein Expr Purif 41:154–161

    Article  CAS  PubMed  Google Scholar 

  • Udomsangpetch R, Pipitaporn B, Krishna S, Angus B, Pukrittayakamee S, Bates I, Suputtamongkol Y, Kyle DE, White NJ (1996) Antimalarial drugs reduce cytoadherence and rosetting Plasmodium falciparum. J Infect Dis 173:691–698

    Article  CAS  PubMed  Google Scholar 

  • Weber T, Lu M, Andera L, Lahm H, Gellert N, Fariss MW, Korinek V, Sattler W, Ucker DS, Terman A, Schröder A, Erl W, Brunk UT, Coffey RJ, Weber C, Neuzil J (2002) Vitamin E succinate is a potent novel antineoplastic agent with high selectivity and cooperativity with tumor necrosis factor-related apoptosis-inducing ligand (Apo2 ligand) in vivo. Clin Cancer Res 8:863–869

    PubMed  CAS  Google Scholar 

  • Weber T, Dalen H, Andera L, Nègre-Salvayre A, Augé N, Sticha M, Lloret A, Terman A, Witting PK, Higuchi M, Plasilova M, Zivny J, Gellert N, Weber C, Neuzil J (2003) Mitochondria play a central role in apoptosis induced by alpha-tocopheryl succinate, an agent with antineoplastic activity: comparison with receptor-mediated pro-apoptotic signaling. Biochemistry 42:4277–4291

    Article  CAS  PubMed  Google Scholar 

  • White NJ (2008) Qinghaosu (artemisinin): the price of success. Science 320:330–334

    Article  CAS  PubMed  Google Scholar 

  • White NJ (2017) Malaria parasite clearance. Malar J 16:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • WHO (2016) World Malaria Report. World Health Organization, Geneva

    Google Scholar 

  • Yan B, Stantic M, Zobalova R, Bezawork-Geleta A, Stapelberg M, Stursa J, Prokopova K, Dong L, Neuzil J (2015) Mitochondrially targeted vitamin E succinate efficiently kills breast tumour-initiating cells in a complex II-dependent manner. BMC Cancer 15:401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zingg JM, Azzi A (2004) Non-antioxidant activities of vitamin E. Curr Med Chem 11:1113–1133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. PF ADJOU MOUMOUNI at the National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, for language editing. A part of this work was supported by grant from the Naito Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Suzuki.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kume, A., Kasai, S., Furuya, H. et al. α-Tocopheryl succinate-suppressed development of cerebral malaria in mice. Parasitol Res 117, 3177–3182 (2018). https://doi.org/10.1007/s00436-018-6016-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-6016-2

Keywords

Navigation