Skip to main content
Log in

Ultrastructural, cytochemistry and electron tomography analysis of Caryophyllaeides fennica (Schneider, 1902) (Cestoda: Lytocestidae) reveals novel spermatology characteristics in the Eucestoda

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Spermatozoon formation in Caryophyllaeides fennica (Schneider, 1902) is characterised by the following: (1) apical electron-dense material in the zone of differentiation, (2) typical striated roots situated unconventionally in opposite directions in early stages of spermiogenesis, (3) intercentriolar body composed of three electron-dense and two electron-lucent plates, (4) free flagellum and a flagellar bud that correspond to a greatly reduced flagellum and (5) rotation of free flagellum and a flagellar bud to the median cytoplasmic process at 90°. The development of two flagella of significantly unequal length clearly supports a derived form of spermiogenesis in the Caryophyllidea. New for cestodes is a finding of two additional striated roots situated opposite each other, in conjunction with both the flagellar bud and free flagellum. Mutual position of additional striated roots and typical striated roots is parallel in early stages and perpendicular in advanced stages of spermiogenesis. A complete proximodistal fusion gives rise to a mature spermatozoon consisting of one axoneme, parallel cortical microtubules, a nucleus and a moderately electron-dense cytoplasm with glycogen particles, detected by a technique of Thiéry (J Microsc 6:987–1018, 1967), in the principal regions (II, III, IV). Electron tomography analysis of the free flagellum and one axoneme of a mature spermatozoon of C. fennica provides clear evidence, for the first time, that two tubular structures are present in the central axonemal electron-dense core. Phylogenetically important aspects of spermiogenesis of the Caryophyllidea with one axoneme, and other cestodes with one or two axonemes, are briefly reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bâ CT, Marchand B (1995) Spermiogenesis, spermatozoa and phyletic affinities in the Cestoda. In: Jamieson, BGM, Ausie J, Justine JL (eds) Advances in spermatozoal phylogeny and taxonomy. Mém Mus natn Hist nat 166:87–95

  • Bruňanská M (2009) Spermatological characters of the caryophyllidean cestode Khawia sinensis Hsü, 1935, a carp parasite. Parasitol Res 105:1603–1610

    Article  PubMed  Google Scholar 

  • Bruňanská M (2010) Recent insights into spermatozoa development and ultrastructure in the Eucestoda. In: Lejeune T, Delvaux P (eds) Human spermatozoa: maturation, capacitation and abnormalities. Nova Science Publishers, Inc., New York, pp 327–354

    Google Scholar 

  • Bruňanská M, Kostič B (2012) Revisiting caryophyllidean type of spermiogenesis in the Eucestoda based on spermatozoon differentiation and ultrastructure of Caryophyllaeus laticeps (Pallas, 1781). Parasitol Res 110:141–149

    Article  PubMed  Google Scholar 

  • Bruňanská M, Bílý T, Nebesářová J (2015) Nippotaenia mogurndae Yamaguti et Myiata, 1940 (Cestoda, Nippotaeniidea): first data on spermiogenesis and sperm ultrastructure. Parasitol Res 114:1443–1453

    Article  PubMed  Google Scholar 

  • Bruňanská M, Nebesářová J, Scholz T, Fagerholm H-P (2001) Spermiogenesis in the pseudophyllid cestode Eubothrium crassum (Bloch, 1779). Parasitol Res 87:579–588

    Article  PubMed  Google Scholar 

  • Bruňanská M, Poddubnaya LG (2006) Spermiogenesis in the caryophyllidean cestode Khawia armeniaca (Cholodkovski, 1915). Parasitol Res 99:449–454

    Article  PubMed  Google Scholar 

  • Bruňanská M, Poddubnaya LG (2010) Spermatological characters of the spathebothriidean tapeworm Didymobothrium rudolphii (Monticelli, 1890). Parasitol Res 106:1435–1442

    Article  PubMed  Google Scholar 

  • Bruňanská M, Poddubnaya LG, Xylander WER (2013) A reinvestigation of spermiogenesis in Amphilina foliacea (Platyhelminthes, Amphilinidea). Folia Parasitol 60:43–50

    Article  PubMed  Google Scholar 

  • Bruňanská M, Scholz T, Dezfuli B, Poddubnaya LG (2006) Spermiogenesis and sperm ultrastructure of Cyathocephalus truncatus (Pallas, 1781) Kessler, 1868 (Cestoda: Spathebothriidea). J Parasitol 92:884–892

    Article  PubMed  Google Scholar 

  • Burton PR (1967) Fine structure of the unique central region of the axial unit of lung-fluke spermatozoa. J Ultrastruct Res 19:166–172

    Article  CAS  PubMed  Google Scholar 

  • Burton PR, Silveira M (1971) Electron microscopic and optical diffraction studies of negatively stained axial units of certain platyhelminth sperm. J Ultrastruct Res 36:757–767

    Article  CAS  PubMed  Google Scholar 

  • Caira JN, Littlewood DTJ (2013) Worms, Platyhelminthes. In: Levin SA (ed) Encyclopedia of biodiversity, vol 7. Academic, Waltham, pp 437–469

    Chapter  Google Scholar 

  • Ciolfi S, Mencarelli C, Dallai R (2016) The evolution of sperm axoneme structure and the dynein heavy chain complement in cecidomid insects. Cytoskeleton 73:209–218

    Article  CAS  PubMed  Google Scholar 

  • Crowther RA, Henderson R, Smith JM (1996) MRC image processing programs. J Struct Biol 116:9–16

    Article  CAS  PubMed  Google Scholar 

  • Ehlers U (1984) Phylogenetishes System der Platyhelminthes. In Verhandl Naturwissensch Vereins Hamburg 27:291–294

    Google Scholar 

  • Gamil IS (2008) Ultrastructural studies of the spermatogenesis and spermiogenesis of the caryophyllidean cestode Wenyonia virilis (Woodland, 1923). Parasitol Res 103:777–785

    Article  PubMed  Google Scholar 

  • Henley C, Costello DP, Thomas MB, Newton WD (1969) The “9 + 1” pattern of microtubules in spermatozoa of Mesostoma (Platyhelminthes, Turbellaria). Proceed Nat Acad Sci USA 64:849–856

    Article  CAS  Google Scholar 

  • Hoberg EP, Mariaux J, Brooks DR (2001) Phylogeny among the orders of the Eucestoda (Cercomeromorphae): integrating morphology, molecules and total evidence. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor and Francis, London, pp 112–126

    Google Scholar 

  • Iomini C, Justine J-L (1997) Spermiogenesis and spermatozoon of Echinostoma caproni (Platyhelminthes, Digenea): transmission and scanning electron microscopy, and tubulin immunocytochemistry. Tissue Cell 29:107–118

    Article  CAS  PubMed  Google Scholar 

  • Iomini C, Raikova O, Noury-Sraïri N, Justine J-L (1995) Immunocytochemistry of tubulin in spermatozoa of Platyhelminthes. In: Jamieson BGM, Ausio J, Justine J-L (eds) Advances in spermatozoal phylogeny and taxonomy. Mém Mus natn Hist nat 166:97–104

  • Justine J-L (1998) Spermatozoa as phylogenetic characters for the Eucestoda. J Parasitol 84:385–408

    Article  CAS  PubMed  Google Scholar 

  • Justine J-L (2001) Spermatozoa as phylogenetic characters for the Platyhelminthes. In: Littlewood DTJ, Bray RA (eds) Interrelationships of the Platyhelminthes. Taylor and Francis, London, pp 231–238

    Google Scholar 

  • Justine J-L (2003) Ultrastructure des spermatozoïdes et phylogénie des Neodermata. In: C. Combes C, Jourdane J (eds) Taxonomy, ecology and evolution of metazoan parasites. PUP, Perpignan, pp 359–380

  • Justine J-L, Iomini C, Raikova O, Mollaret I (1998) The homology of cortical microtubules in platyhelminth spermatozoa: a comparative immunocytochemical study of acetylated tubulin. Acta Zool 79:235–241

    Article  Google Scholar 

  • Kazacos K, Mackiewicz JS (1972) Spermatogenesis in Hunturella nodulosa Mackiewicz and McCrae, 1962 (Cestoidea: Caryophyllidea). Z Parasitenkd 38:21–31

    Article  CAS  PubMed  Google Scholar 

  • Kremer JR, Mastronarde DN, McIntosh JR (1996) Computer visualization of three-dimensional image data using IMOD. J Struct Biol 116:71–76

    Article  CAS  PubMed  Google Scholar 

  • Levron C, Bruňanská M, Marchand B (2005) Spermiogenesis and sperm ultrastructure of the pseudophyllidean cestode Triaenophorus nodulosus (Pallas, 1781). Parasitol Res 98:26–33

    Article  PubMed  Google Scholar 

  • Levron C, Bruňanská M, Poddubnaya LG (2006a) Spermatological characters of the pseudophyllidean cestode Bothriocephalus scorpii (Müller, 1776). Parasitol Int 55:113–120

    Article  CAS  PubMed  Google Scholar 

  • Levron C, Bruňanská M, Poddubnaya LG (2006b) Spermatological characters in Diphyllobothrium latum (Cestoda, Pseudophyllidea). J Morphol 267:1110–1119

    Article  PubMed  Google Scholar 

  • Levron C, Miquel J, Oros M, Scholz T (2010) Spermatozoa of tapeworms (Platyhelminthes, Eucestoda): advances in ultrastructural and phylogenetic studies. Biol Rev 85:523–543

    PubMed  Google Scholar 

  • Levron C, Sitko J, Scholz T (2009) Spermiogenesis and spermatozoon of the tapeworm Ligula intestinalis (Diphyllobothriidae): phylogenetic implications. J Parasitol 95:1–9

    Article  PubMed  Google Scholar 

  • Levron C, Yoneva A, Kalbe M (2013) Spermatological characters in the diphyllobothriidean Schistocephalus solidus (Cestoda). Acta Zool (Stockholm) 94:240–247

    Article  Google Scholar 

  • Mackiewicz JS (2003) Caryophyllidea (Cestoidea): molecules, morphology and evolution. Acta Parasitol 48:143–154

    Google Scholar 

  • Mariaux J (1998) A molecular phylogeny of the Eucestoda. J Parasitol 84:114–124

    Article  CAS  PubMed  Google Scholar 

  • Marigo AM, Delgado E, Torres J, Bâ CT, Miquel J (2012a) Spermiogenesis and spermatozoon ultrastructure of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (Gadiformes: Merlucciidae). Parasitol Res 110:19–30

    Article  PubMed  Google Scholar 

  • Marigo AM, Levron C, Bâ CT, Miquel J (2012b) Ultrastructural study of spermiogenesis and the spermatozoon of the proteocephalidean cestode Barsonella lafoni de Chambrier et al., 2009, a parasite of the catfish Clarias gariepinus (Burchell, 1822) (Siluriformes, Clariidae). Zool Anz 251:147–159

    Article  Google Scholar 

  • Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51

    Article  PubMed  Google Scholar 

  • Miquel J, Marchand B (2001) Tubulin immunocytochemistry of the spermatozoa in the cestode Mesocestoides litteratus (Mesocestoididae). Acta Parasitol 46:130–134

    Google Scholar 

  • Miquel J, Świderski Z, Mackiewicz JS, Ibraheem MH (2008) Ultrastructure of spermiogenesis in the caryophyllidean cestode Wenyonia virilis Woodland, 1923, with re-assessment of flagellar rotation in Glaridacris catostomi Cooper, 1920. Acta Parasitol 53:19–29

    Article  Google Scholar 

  • Mokhtar-Maamouri F (1979) Étude en microscopie électronique de la spermatogénèse et du spermatozoïde de Phyllobothrium gracile Wedl, 1855 (Cestoda, Tetraphyllidea, Phyllobothriidae). Z Parasitenkd 59:245–258

    Article  Google Scholar 

  • Ndiaye PI, Miquel J, Fons R, Marchand B (2003) Spermiogenesis and sperm ultrastructure of the liver fluke Fasciola hepatica L., 1758 (Digenea, Fasciolidae): transmission and scanning electron microscopy, and tubulin immunocytochemistry. Acta Parasitol 48:182–194

    Google Scholar 

  • Olson PD, Littlewood DTJ, Bray RA, Mariaux J (2001) Interrelationships and evolution of the tapeworms (Platyhelminthes: Cestoda). Mol Phylogen Evol 19:443–467

    Article  CAS  Google Scholar 

  • Olson PD, Poddubnaya LG, Littlewood DTJ, Scholz T (2008) On the position of Archigetes and its bearing on the early evolution of the tapeworms. J Parasitol 94:898–904

    Article  CAS  PubMed  Google Scholar 

  • Oros M, Hanzelová V, Scholz T, Mackiewicz JS (2008) Phylogenetic relationships of the monozoic tapeworms (Eucestoda: Caryophyllidea) inferred from morphological characters. Syst Parasitol 70:1–14

    Article  PubMed  Google Scholar 

  • Protasova EP, Kuperman BI, Roitman VA, Poddubnaya LG (1990) The caryophyllidean fauna of the USSR. Nauka, Moscow, p 240

    Google Scholar 

  • Silveira M (1969) Ultrastructural studies on a “nine plus one” flagellum 1. J Ultrastruct Res 26:274–288

    Article  CAS  PubMed  Google Scholar 

  • Silveira M (1973) Intraaxonemal glycogen in “9 + 1” flagella of flatworms. J Ultrastruct Res 44:253–264

    Article  CAS  PubMed  Google Scholar 

  • Stoitsova SR, Georgiev BB, Dacheva RB (1995) Ultrastructure of spermiogenesis and the mature spermatozoon of Tetrabothrius erostris Loennberg, 1896 (Cestoda, Tetrabothriidae). Int J Parasitol 25:1427–1436

    Article  CAS  PubMed  Google Scholar 

  • Šípková L, Levron C, Oros M, Justine J-L (2011) Spermatological characters of bothriocephalideans (Cestoda) inferred from an ultrastructural study on Oncodiscus sauridae and Senga sp. Parasitol Res 109:9–18

    Article  PubMed  Google Scholar 

  • Šípková L, Levron C, Freeman M, Scholz T (2010) Spermiogenesis and spermatozoon of the tapeworm Parabothriocephalus gracilis (Bothriocephalidea): ultrastructural and cytochemical studies. Acta Parasitol 55:58–65

    Article  Google Scholar 

  • Świderski Z (1986) Three types of spermiogenesis in cestodes. In: Imura T, Maruse S, Suzuki T (eds) Proc 11th Int Congr Electr Microsc, Kyoto, pp 2959–2960

    Google Scholar 

  • Świderski Z, Mackiewicz JS (1976) Fine structure of the spermatozoon of Glaridacris catostomi (Cestoidea, Caryophyllidea). In: Feldman-Muhsam B (ed) Proc 6th Eur Congr Electr Microsc, Jerusalem, pp 307–308

    Google Scholar 

  • Świderski Z, Mackiewicz JS (2002) Ultrastructure of spermatogenesis and spermatozoa of the caryophyllidean cestode Glaridacris catostomi Cooper, 1920. Acta Parasitol 47:83–104

    Google Scholar 

  • Tekle YI, Raikova OI, Justine J-L, Hendelberg J, Jondelius U (2007) Ultrastructural and immunocytochemical investigation of acoel sperms with 9 + 1 axoneme structure: new sperm characters for unraveling phylogeny in Acoela. Zoomorphology 126:1–16

    Article  Google Scholar 

  • Thiéry J-P (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc 6:987–1018

    Google Scholar 

  • Thomas MB (1975) The structure of the 9 + 1 axonemal core as revealed by treatment with trypsin. J Ultrastruct Res 52:409–422

    Article  CAS  PubMed  Google Scholar 

  • Waeschenbach A, Webster BL, Littlewood DTJ (2012) Adding resolution to ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with large fragments of mtDNA. Mol Phylogen Evol 63:834–847

    Article  CAS  Google Scholar 

  • Yoneva A, Kuchta R, Scholz T (2013) Spermiogenesis and sperm ultrastructure of two species of Duthiersia, parasites of monitors, with a review of spermatological characters in the Diphyllobothriidea (Cestoda). Zool Anz 252:486–494

    Article  Google Scholar 

  • Yoneva A, Levron C, Ash A, Scholz T (2012a) Spermatological characters of monozoic tapeworms (Cestoda: Caryophyllidea), including first data on a species from the Indomalayan catfish. J Parasitol 98:423–430

    Article  PubMed  Google Scholar 

  • Yoneva A, Levron C, Oros M, Orosová M, Scholz T (2011) Ultrastructure of spermiogenesis and mature spermatozoon of Breviscolex orientalis (Cestoda: Caryophyllidea). Parasitol Res 108:997–1005

    Article  PubMed  Google Scholar 

  • Yoneva A, Levron C, Oros M, Orosová M, Scholz T (2012b) Spermiogenesis and spermatozoon ultrastructure of Hunterella nodulosa (Cestoda: Caryophyllidea), a monozoic parasite of suckers (Catostomidae) in North America. Folia Parasitol 59:179–186

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank our colleagues Marta Špakulová and Mikuláš Oros (Slovakia) for providing invaluable help with collecting parasites. We acknowledge the core facility of the Institute of Parasitology, BC ASCR in České Budějovice, Czech Republic, supported by the MEYS CR (LM2015062 Czech-BioImaging). This research was undertaken within the framework of joint research projects (nos. AV ČR-16-08 and SAV-18-21) supported by a bilateral agreement on scientific exchange and cooperation signed by the Czech and Slovak Academies of Sciences. The work was realised within a frame of the Centre of Excellence for Parasitology (Code ITMS: 26220120022) based on the support of the Operational Programme “Research & Development” funded from the European Regional Development Fund (rate 0.4).

Funding

This study was supported by the Grant Agency of the Slovak Republic VEGA (project no. 2/0104/16 to MB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdaléna Bruňanská.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Section Editor: David Bruce Conn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matoušková, M., Bílý, T., Bruňanská, M. et al. Ultrastructural, cytochemistry and electron tomography analysis of Caryophyllaeides fennica (Schneider, 1902) (Cestoda: Lytocestidae) reveals novel spermatology characteristics in the Eucestoda. Parasitol Res 117, 3091–3102 (2018). https://doi.org/10.1007/s00436-018-6001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-6001-9

Keywords

Navigation