Skip to main content
Log in

Chemical analysis and giardicidal effectiveness of the aqueous extract of Cymbopogon citratus Stapf

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Searching for new effective and safe treatment of Giardia lamblia (G. lamblia) parasite is mandatory. The aim was to evaluate the in vitro and in vivo effectiveness of an aqueous extract prepared from the leaves of Cymbagogon citratus (CcAE) against G. lamblia and to reveal the phenolic and antioxidant properties of CcAE. Methods: CcAE (25, 50, 100, 200, 400, and 500 μg/ml) was in vitro incubated with G. lamblia trophozoites in comparison with metronidazole (MTZ 10 and 25 μg/ml). Growth inhibition was evaluated after 3, 24, and 48 h of drug exposure. Infected groups of mice were orally treated for 7 days with CcAE at 125, 250, and 500 mg/kg/day/mouse, in comparison with a group treated with 15 mg/kg/day/mouse MTZ for the same period. The total phenolic components (TPC), the total flavonoid components (TFC), the 2,2,diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, and the high-performance liquid chromatography (HPLC) for quantitative and qualitative phenolic content were chemically estimated. After 24 and 48 h of in vitro incubation, the estimated minimal inhibitory concentrations (MIC) were 500 and 400 μg/ml, respectively, and the concentrations that induced 50% growth inhibition (IC50) were 93.8 and 60.4 μg/ml, respectively (P < 0.001). Mice given 500 mg/kg CcAE showed 100% stool clearance of G. lamblia stages, similar to MTZ-treated control group (P < 0.001). The TPC was 10.7 ± 0.2 mg GAE/g and the TFC was 23.9 ± 0.3 mg quercetin/g, and the estimated IC50 for DPPH free radical scavenging was 16.4 ± 0.1 mg/ml. HPLC revealed the major phenolic components of CcAE to be carnosic acid, p-coumaric acid, cinnamiac acid, quercetin, rutin, and chlorogenic acid. In conclusion, CcAE is significantly effective against G. lamblia in vitro and in vivo, and has considerable phenolic and antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdalla SF, Ramadan NI, Mohamed AA, El-Deeb HK, Al-Khadrawy FM, Badawy AF (2011) A study on the effect of Myrtus communis and Olibanum on Giardia lamblia infection in Egypt. PUJ 4(1):89–100

    Google Scholar 

  • Arome D, Chinedu E, Ameh SF, Sunday AI (2016) Comparative antiplasmodial evaluation of Cymbopogon citratus extracts in Plasmodium berghei-infected mice. J Curr Res Sci Med 2:29–35

    Article  Google Scholar 

  • Bingham AK, Jarroll EL Jr, Meyer EA, Radulescu S (1979) Giardia sp: physical factors of excystation in vitro and excystation vs eosin exclusion as determinants of viability. Exp Parasitol 47(2):284–291

    Article  CAS  PubMed  Google Scholar 

  • Brandelli CL, Giordani RB, De Carli GA, Tasca T (2009) Indigenous traditional medicine: in vitro anti-giardial activity of plants used in the treatment of diarrhea. Parasitol Res 104(6):1345–1349

    Article  PubMed  Google Scholar 

  • Campanati L, Monteiro-Leal LH (2002) The effects of the antiprotozoal drugs metronidazole and furazolidone on trophozoites of Giardia lamblia (P1 strain). Parasitol Res 88(1):80–85

    PubMed  Google Scholar 

  • Cardoso J, Soares MJ (2010) In vitro effects of citral on Trypanosoma cruzi metacyclogenesis. Mem Inst Oswaldo Cruz 105(8):1026–1032

    Article  PubMed  Google Scholar 

  • Cohen SM, Ertürk E, Von Esch AM, Crovetti AJ, Bryan GT (1973) Carcinogenicity of 5-nitrofurans, 5-nitroimidazoles, 4-nitrobenzenes, and related compounds. J Natl Cancer Inst 51(2):403–417

    CAS  PubMed  Google Scholar 

  • Costa G, Fortuna A, Gonçalves D, Figueiredo IV, Falcão A, Batista MT (2017) Pharmacokinetics of Cymbopogon citratus infusion in rats after single oral dose administration. SOJ Pharm Pharm Sci 4(3):1–9

    Article  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12(4):564–582

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humen MA, De Antoni GL, Benyacoub J, Costas ME, Cardozo MI, Kozubsky L, Saudan KY, Boenzli-Bruand A, Blum S, Schiffrin EJ, Pérez PF (2005) Lactobacillus johnsonii La1 antagonizes Giardia intestinalis in vivo. Infect Immun 73(2):1265–1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77(4):487–488

    Article  CAS  PubMed  Google Scholar 

  • Kouassi EK, Coulibaly I, Rodica P, Pintea A, Ouattara S, Odagiu A (2017) HPLC phenolic compounds analysis and antifungal activity of extract's from Cymbopogon citratus (DC) Stapf against Fusarium graminearum and Fusarium oxysporum sp tulipae. J Sci Res Rep 15(1):1–11

    Google Scholar 

  • Kpoviessi S, Bero J, Agbani P, Gbaguidi F, Kpadonou-Kpoviessi B, Sinsin B, Accrombessi G, Frédérich M, Moudachirou M, Quetin-Leclercq J (2014) Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin. J Ethnopharmacol 151(1):652–659

    Article  CAS  PubMed  Google Scholar 

  • Leite JR, Seabra Mde L, Maluf E, Assolant K, Suchecki D, Tufik S, Klepacz S, Calil HM, Carlini EA (1986) Pharmacology of lemongrass (Cymbopogon citratus Stapf). III. Assessment of eventual toxic, hypnotic and anxiolytic effects on humans. J Ethnopharmacol 17(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Lorke D (1983) A new approach to practical acute toxicity testing. Arch Toxicol 54(4):275–287

    Article  CAS  PubMed  Google Scholar 

  • Luize PS, Tiuman TS, Morello LG, Maza PK, Ueda-Nakamura T, Filho BPD, Cortez DAG, Mello JCP, Nakamura CV (2005) Effects of medicinal plant extracts on growth of Leishmania (L.) amazonensis and Trypanosoma cruzi. Rev Bras Cienc Farm 41:85–94

    Article  Google Scholar 

  • Machado M, Dinis AM, Salgueiro L, Cavaleiro C, Custódio JB, Sousa Mdo C (2010) Anti-Giardia activity of phenolic-rich essential oils: effects of Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris, and Lippia graveolens on trophozoites growth, viability, adherence, and ultrastructure. Parasitol Res 106(5):1205–1215

    Article  PubMed  Google Scholar 

  • Mimica-Dukić N, Bozin B, Soković M, Mihajlović B, Matavulj M (2003) Antimicrobial and antioxidant activities of three Mentha species essential oils. Planta Med 69(5):413–419

    Article  PubMed  Google Scholar 

  • Negri M, Salci TP, Shinobu-Mesquita CS, Capoci IR, Svidzinski TI, Kioshima ES (2014) Early state research on antifungal natural products. Molecules 19(3):2925–2956

    Article  PubMed  Google Scholar 

  • Njume C, Jide AA, Ndip RN (2011) Aqueous and organic solvent-extracts of selected south African medicinal plants possess antimicrobial activity against drug-resistant strains of Helicobacter pylori: inhibitory and bactericidal potential. Int J Mol Sci 12(9):5652–5665

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira VC, Moura DM, Lopes JA, de Andrade PP, da Silva NH, Figueiredo RC (2009) Effects of essential oils from Cymbopogon citratus (DC) Stapf., Lippia sidoides Cham., and Ocimum gratissimum L. on growth and ultrastructure of Leishmania chagasi promastigotes. Parasitol Res 104(5):1053–1059

    Article  PubMed  Google Scholar 

  • Quettier-Deleu C, Gressier B, Vasseur J, Dine T, Brunet C, Luyckx M, Cazin M, Cazin JC, Bailleul F, Trotin F (2000) Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol 72(1–2):35–42

    Article  CAS  PubMed  Google Scholar 

  • Roby MHH, Sarhan MA, Selim KA, Khalel KI (2013) Evaluation of antioxidant activity, total phenols and phenolic compounds in thyme (Thymus vulgaris L.), sage (Salvia officinalis L.), and marjoram (Origanum majorana L.) extracts. Indust Crop Prod 43:827–831

    Article  CAS  Google Scholar 

  • Santin MR, dos Santos AO, Nakamura CV, Dias Filho BP, Ferreira IC, Ueda-Nakamura T (2009) In vitro activity of the essential oil of Cymbopogon citratus and its major component (citral) on Leishmania amazonensis. Parasitol Res 105(6):1489–1496

    Article  PubMed  Google Scholar 

  • Santoro GF, Cardoso MG, Guimarães LGL, Freire JM, Soares MJ (2007) Anti-proliferative effect of the essential oil of Cymbopogon citratus (DC) Stapf (lemongrass) on intracellular amastigotes, bloodstream trypomastigotes and culture epimastigotes of Trypanosoma cruzi (Protozoa: Kinetoplastida). Parasitology 134:1649–1656

    Article  CAS  PubMed  Google Scholar 

  • Shah G, Shri R, Panchal V, Sharma N, Singh B, Mann AS (2011) Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (lemon grass). J Adv Pharm Technol Res 2(1):3–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Tchoumbougnang F, Zollo PH, Dagne E, Mekonnen Y (2005) In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Med 71(1):20–23

    Article  CAS  PubMed  Google Scholar 

  • Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, Rokni MB, Zhou XN, Fèvre EM, Sripa B, Gargouri N, Fürst T, Budke CM, Carabin H, Kirk MD, Angulo FJ, Havelaar A, de Silva N (2015) World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases: a data synthesis. von Seidlein L. PLoS Med 12(12):e1001920

    Article  PubMed  PubMed Central  Google Scholar 

  • Zielinski AAF, Haminiuk CWI, Alberti A, Nogueira A, Demiate IM (2014) A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res Int 60:246–254

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman M. H. Méabed.

Ethics declarations

Grant support

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors report no conflicts of interest.

Additional information

Section Editor: Panagiotis Karanis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méabed, E.M.H., Abou-Sreea, A.I.B. & Roby, M.H.H. Chemical analysis and giardicidal effectiveness of the aqueous extract of Cymbopogon citratus Stapf. Parasitol Res 117, 1745–1755 (2018). https://doi.org/10.1007/s00436-018-5855-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-018-5855-1

Keywords

Navigation