Parasitology Research

, Volume 117, Issue 6, pp 1737–1744 | Cite as

Effect of temperature and vector nutrition on the development and multiplication of Trypanosoma rangeli in Rhodnius prolixus

  • Roberta Carvalho Ferreira
  • Cínthia Firmo Teixeira
  • Vinícius Fernandes A. de Sousa
  • Alessandra A. Guarneri
Original Paper


Trypanosoma rangeli is a protozoan parasite that infects mammals and triatomines, causing different levels of pathogenicity in its invertebrate vectors, particularly those from the genus Rhodnius. We have recently shown that temperature can modulate T. rangeli growth during in vitro culture, as well as its in vivo pathogenicity to R. prolixus. In the present study, we investigated colonization of R. prolixus by T. rangeli and assessed the role of temperature and vector nutrition on parasite development and multiplication. We infected nymphs and either assessed parasite density in the first hours after the ingestion of the infected blood or maintained the nymphs for up to 60 days at different temperatures (21, 24, 27, and 30 °C) and under different blood-feeding schedules (either every 15 days, or on day 30 post infection only), with parasite development and multiplication measured on days 15, 30, and 60 post infection. In the first hours after ingesting infected blood, epimastigogenesis not only occurred in the anterior midgut, but a stable parasite population also established in this intestinal region. T. rangeli subsequently colonized all intestinal regions examined, but with fewer parasites being found in the rectum. The number of parasites was only affected by higher temperatures (27 and 30 °C) during the beginning of the infection (15 days post infection). Nutritional status of the vector also had a significant effect on parasite development, as reduced blood-feeding decreased infection rates by approximately 30%.


Trypanosoma rangeli Rhodnius prolixus Parasite-vector interaction Temperature Parasite growth 


Funding information

AAG was supported by CNPq productivity grants. This work received financial support from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM/CNPq), and Programa Estratégico de Apoio a Pesquisa em Saúde (PAPES VI/FIOCRUZ).

Compliance with ethical standards

All protocols involving animals followed established procedures of Fiocruz and were approved by the Ethics Committee on Animal Use (CEUA-FIOCRUZ) under the license number LW 61/12.


  1. Añez N (1983) Studies on Trypanosoma rangeli Tejera, 1920. V. Developmental pattern in the alimentary canal of Rhodnius prolixus. Mem Inst Oswaldo Cruz 78:183–191CrossRefGoogle Scholar
  2. Añez N, Nieves E, Cazorla D (1987) Studies on Trypanosoma rangeli Tejera, 1920. IX. Course of infection in different stages of Rhodnius prolixus. Mem Inst Oswaldo Cruz 82:1–6CrossRefPubMedGoogle Scholar
  3. Azambuja P, Guimarães J, Garcia E (1983) Haemolytic factor from the crop of Rhodnius prolixus: evidence and partial characterization. J Insect Physiol 29:833–837CrossRefGoogle Scholar
  4. Azambuja P, Feder D, Garcia E (2004) Isolation of Serratia marcescens in the midgut of Rhodnius prolixus: impact on the establishment of the parasite Trypanosoma cruzi in the vector. Exp Parasitol 107:89–96CrossRefPubMedGoogle Scholar
  5. Billingsley PF, Downe AER (1985) Cellular localization of aminopeptidase in the midgut of Rhodnius prolixus Stal (Hemiptera: Reduviidae) during blood digestion. Cell Tissue Res 241:421–428CrossRefGoogle Scholar
  6. Billingsley PF, Downe AER (1988) Ultrastructural localization of cathepsin B in the midgut of Rhodnius prolixus Stal (Hemiptera: Reduviidae) during blood digestion. Int J Insect Morphol Embryol 17:295–302CrossRefGoogle Scholar
  7. Brener Z (1962) Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Rev Inst Med Trop Sao Paulo 4:389–396PubMedGoogle Scholar
  8. Carcavallo RU, Silva RM, Otero AMA, Tonn RJ (1975) Infección natural de Rhodnius robustus Larrouse y Rhodnius pictipes Stal por T. cruzi y T. rangeli en Venezuela. Bol Dir Malariol Saneamiento Ambient 15:117–120Google Scholar
  9. Clarke A, Fraser KPP (2004) Why does metabolism scale with temperature? Funct Ecol 18:243–251CrossRefGoogle Scholar
  10. Cuba Cuba CA (1998) Review of biological and diagnostic aspects of Trypanosoma (Herpetosoma) rangeli. Rev Soc Bras Med Trop 31:207–220CrossRefPubMedGoogle Scholar
  11. D’Alessandro A, Mandrel S (1969) Natural infections and behavior of Trypanosoma rangeli and Trypanosoma cruzi in the vector Rhodnius prolixus in Colombia. J Parasitol 55:846–852CrossRefPubMedGoogle Scholar
  12. D’Alessandro A, Saravia NG (1999) Trypanosoma rangeli. In: Gilles HM (ed) Protozoal disease. University Press, Oxford, pp 398–412Google Scholar
  13. Dias FA, Guerra B, Vieira LR, Perdomo HD, Gandara ACP, do Amaral RJV, Vollu RE, Gomes SAO, Lara FA, Sorgine MHF, Medei E, Oliveira PL, Salmon D (2015) Monitoring of the parasite load in the digestive tract of Rhodnius prolixus by combined qPCR analysis and imaging techniques provides new insights into the trypanosome life cycle. PLoS Negl Trop Dis 9(10):e0004186. CrossRefPubMedCentralGoogle Scholar
  14. Elliot SL, Rodrigues JO, Lorenzo MG, Martins-Filho OA, Guarneri AA (2015) Trypanosoma cruzi, etiological agent of Chagas disease, is virulent to its triatomine vector Rhodnius prolixus in a temperature-dependent manner. PLoS Negl Trop Dis 9:e0003646. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ferreira LL, Lorenzo MG, Elliot SL, Guarneri AA (2010) A standardizable protocol for infection of Rhodnius prolixus with Trypanosoma rangeli, which mimics natural infections and reveals physiological effects of infection upon the insect. J Invertebr Pathol 105:91–97CrossRefPubMedGoogle Scholar
  16. Ferreira LL, Pereira M, Guarneri AA (2015) Revisiting Trypanosoma rangeli transmission involving susceptible and non-susceptible hosts. PLoS One 10(10):e0140575. CrossRefPubMedCentralGoogle Scholar
  17. Ferreira RC, Kessler RL, Lorenzo MG, Paim RMM, Ferreira LL, Probst CM, Alves-Silva J, Guarneri AA (2016) Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing. Parasitology 143:434–443CrossRefPubMedGoogle Scholar
  18. Guarneri AA, Lorenzo MG (2017) Triatomine physiology in the context of trypanosome infection. J Insect Physiol 97:66–76CrossRefPubMedGoogle Scholar
  19. Guarneri AA, Lazzari C, Xavier AAP, Diotaiuti L, Lorenzo MG (2003) The effect of temperature on the behaviour and development of Triatoma brasiliensis. Physiol Entomol 28:185–191CrossRefGoogle Scholar
  20. Hecker H, Schwarzenbach M, Rudin W (1990) Development and interactions of Trypanosoma rangeli in and with the reduviid bug Rhodnius prolixus. Parasitol Res 76:311–318CrossRefPubMedGoogle Scholar
  21. Hoare CA, Wallace FG (1966) Developmental stages of trypanosomatid flagellates: a new terminology. Nature 212:1385–1386CrossRefGoogle Scholar
  22. Koerich L, Emmanuelle-Machado P, Santos K, Grisard EC, Steindel M (2002) Differentiation of Trypanosoma rangeli: high production of infective trypomastigote forms in vitro. Parasitol Res 88:21–25PubMedGoogle Scholar
  23. Kollien AH, Schmidt J, Schaub GA (1998) Modes of association of Trypanosoma cruzi with the intestinal tract of the vector Triatoma infestans. Acta Trop 70:127–141CrossRefPubMedGoogle Scholar
  24. Maia da Silva F, Junqueira ACV, Campaner M, Rodrigues AC, Crisante G, Ramirez LE, Caballero ZCE, Monteiro FA, Añez N, Teixeira MMG (2007) Comparative phylogeography of Trypanosoma rangeli and Rhodnius (Hemiptera: Reduviidae) supports a long coexistence of parasite lineages and their sympatric vectors. Mol Ecol 16:3361–3373CrossRefPubMedGoogle Scholar
  25. Marquez DDS, Rodrigues-Ottaiano C, Oliveira RM, Pedrosa AL, Cabrine-Santos M, Lages-Silva E, Ramírez LE (2006) Susceptibility of different triatomine species to Trypanosoma rangeli experimental infection. Vector Borne Zoonotic Dis 6:50–56CrossRefGoogle Scholar
  26. Mello C, Azambuja P, Garcia E, Ratcliffe N (1996) Differential in vitro and in vivo behavior of three strains of Trypanosoma cruzi in the gut and hemolymph of Rhodnius prolixus. Exp Parasitol 82:112–121CrossRefPubMedGoogle Scholar
  27. Pereira M, Andrade A, Ribeiro J (1981) Lectins of distinct specificity in Rhodnius prolixus interact selectively with Trypanosoma cruzi. Science 211:597–600CrossRefPubMedGoogle Scholar
  28. Ramirez LE, Lages-Silva E, Alvarenga-Franco F, Matos A, Vargas N, Fernandes O, Zingales B (2002) High prevalence of Trypanosoma rangeli and Trypanosoma cruzi in opossums and triatomids in a formerly-endemic area of Chagas disease in Southeast Brazil. Acta Trop 84:189–198CrossRefPubMedGoogle Scholar
  29. Rodrigues JDO, Lorenzo MG, Martins-Filho OA, Elliot SL, Guarneri AA (2016) Temperature and parasite life-history are important modulators of the outcome of Trypanosoma rangeli–Rhodnius prolixus interactions. Parasitology 143:1459–1468CrossRefGoogle Scholar
  30. Schaub GA (1989) Trypanosoma cruzi: quantitative studies of development of two strains in small intestine and rectum of the vector Triatoma infestans. Exp Parasitol 68:260–273CrossRefPubMedGoogle Scholar
  31. Schmidt J, Kleffmann T, Schaub GA (1998) Hydrophobic attachment of Trypanosoma cruzi to a superficial layer of the rectal cuticle in the bug Triatoma infestans. Parasitol Res 84:527–536CrossRefPubMedGoogle Scholar
  32. Schottelius J (1987) Neuraminidase fluorescence test for the differentiation of Trypanosoma cruzi and Trypanosoma rangeli. Trop Med Parasitol 38:323–327PubMedGoogle Scholar
  33. Sherlock I (1979) Epidemiologia. In: Trypanosoma cruzi e Doença de Chagas. Guanabara Koogan, Rio de Janeiro, pp 89–151Google Scholar
  34. Sternberg ED, Thomas MB (2014) Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol 30:115–122CrossRefPubMedGoogle Scholar
  35. Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344–350CrossRefGoogle Scholar
  36. Tobie EJ (1965) Biological factors influencing transmission of Trypanosoma rangeli by Rhodnius prolixus. J Parasitol 51:837–841CrossRefPubMedGoogle Scholar
  37. Vallejo GA, Suárez J, Olaya JL, Gutiérrez SA, Carranza JC (2015) Trypanosoma rangeli: un protozoo infectivo y no patógeno para el humano que contribuye al entendimiento de la transmisión vectorial y la infección por Trypanosoma cruzi, agente causal de la enfermedad de Chagas. Rev Acad Colomb Cienc Exact Fis Nat 39:111–122CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Roberta Carvalho Ferreira
    • 1
  • Cínthia Firmo Teixeira
    • 1
  • Vinícius Fernandes A. de Sousa
    • 1
  • Alessandra A. Guarneri
    • 1
  1. 1.Vector Behaviour and Pathogen Interaction GroupInstituto René RachouBelo HorizonteBrazil

Personalised recommendations