Parasitology Research

, Volume 117, Issue 3, pp 705–712 | Cite as

Inclusion complex and nanoclusters of cyclodextrin to increase the solubility and efficacy of albendazole

  • P. A. Pacheco
  • L. N. C. Rodrigues
  • J. F. S. Ferreira
  • A. C. P. Gomes
  • C. J. Veríssimo
  • H. Louvandini
  • R. L. D. Costa
  • L. M. Katiki
Original Paper


Albendazole (ABZ), a benzimidazole widely used to control gastrointestinal parasites, is poorly soluble in water, resulting in variable and incomplete bioavailability. This has favored the appearance ABZ-resistant nematodes and, consequently, an increase in its clinical ineffectiveness. Among the pharmaceutical techniques developed to increase drug efficacy, cyclodextrins (CDs) and other polymers have been extensively used with water-insoluble pharmaceutical drugs to increase their solubility and availability. Our objective was to prepare ABZ formulations, including β-cyclodextrin (βCD) or hydroxypropyl-β-cyclodextrin (HPβCD), associated or not to the water-soluble polymer polyvinylpyrrolidone (PVP). These formulations had their solubility and anthelmintic effect both evaluated in vitro. Also, their anthelmintic efficacy was evaluated in lambs naturally infected with gastrointestinal nematodes (GIN) through the fecal egg count (FEC) reduction test. In vitro, the complex ABZ/HPβCD had higher solubility than ABZ/βCD. The addition of PVP to the complexes increased solubility and dissolution rates more effectively for ABZ/HPβCD than for ABZ/βCD. In vivo, 48 lambs naturally infected with GIN were divided into six experimental groups: control, ABZ, ABZ/βCD, ABZ/βCD-PVP, ABZ/HPβCD, and ABZ/HPβCD-PVP. Each treated animal received 10 mg/kg of body weight (based on the ABZ dose) for three consecutive days. After 10 days of the last administered dose, treatment efficacy was calculated. The efficacy values were as follows: ABZ (70.33%), ABZ/βCD (85.33%), ABZ/βCD-PVP (82.86%), ABZ/HPβCD (78.37%), and ABZ/HPβCD-PVP (43.79%). In vitro, ABZ/HPβCD and ABZ/HPβCD-PVP had high solubility and dissolution rates. In vivo, although the efficacies of ABZ/βCD, ABZ/βCD-PVP, and ABZ/HPβCD increased slightly when compared to pure ABZ, this increase was not significant (P > 0.05).


Albendazole Inclusion complex Cyclodextrin Solubility Anthelmintic Sheep 


Funding information

We recognize that this research would not have been possible without the Fundação de Amparo a Pesquisa do Estado de São Paulo (grant number 2013/15704-3) and Coordenação de Aperfeiçoamento de Pessoal do Nível Superior.

Compliance with ethical standards

Animal procedures and management protocols were approved by the Ethics Committee on Animal Use (CEUA) of the Instituto de Zootecnia (IZ/APTA/SAA) and received protocol number IZ/229-16.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ali DN, Hennessy DR (1995) The effect of reduced feed intake on the efficacy of oxfendazole against benzimidazole resistant Haemonchus contortus and Trichostrongylus colubriformis in sheep. Int J Parasitol 25(1):71–74. CrossRefPubMedGoogle Scholar
  2. Alvarez LI, Mottier ML, Lanusse CE (2007) Drug transfer into target helminth parasites. Trends Parasitol 23(3):97–104. CrossRefPubMedGoogle Scholar
  3. Aronson H (1993) Correction factor for dissolution profile calculations. J Pharm Sci 82(11):1190. CrossRefPubMedGoogle Scholar
  4. Asbahr ACC, Franco L, Barison A, Silva CWP, Ferraz HG, Rodrigues LNC (2009) Binary and ternary inclusion complexes of finasteride in HPβCD and polymers: preparation and characterization. Bioorgan Med Chem 17(7):2718–2723. CrossRefGoogle Scholar
  5. Cardia DFF, Rocha-Oliveira RA, Tsunemi MH, Amarante AFT (2011) Immune response and performance of growing Santa Ines lambs to artificial Trichostrongylus colubriformis infections. Vet Parasitol 182(2-4):248–258. CrossRefPubMedGoogle Scholar
  6. Carrier RL, Miller LA, Ahmed I (2007) The utility of cyclodextrins for enhancing oral bioavailability. J Control Release 123(2):78–99. CrossRefPubMedGoogle Scholar
  7. Carvalho WF (1999) Técnicas Médicas de Hematologia e Imuno-Hematologia, 6th edn. Cooperativa Editora e de Cultura Médica, Belo Horizonte, pp 66–175Google Scholar
  8. Castillo JA, Palomo-Canales J, Garcia JJ, Lastres JL, Bolas F, Torrado JJ (1999) Preparation and characterization of albendazole β-cyclodextrin complexes. Drug Dev Ind Pharm 25(12):1241–1248. CrossRefPubMedGoogle Scholar
  9. Chagas ACS, Vieira LS (2007) Ação de Azadirachta indica (Neem) em nematódeos gastrintestinais de caprinos. Braz Vet Res Anim Sci 144:49–55. CrossRefGoogle Scholar
  10. Challa R, Ahuja A, Ali J, Khar RK (2005) Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6(2):E329–E357. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Charkoftaki G, Dokoumetzidis A, Valsami G, Macheras P (2009) Biopharmaceutical classification based on solubility and dissolution: a reappraisal of criteria for hypothesis models in the light of the experimental observations. Basic Clin Pharmacol 106(3):168–172. CrossRefGoogle Scholar
  12. Coles GC, Bauer C, Borgsteede FHM, Geerts S, Klei TR, Taylor MA, Waller PJ (1992) World Association for the Advancement of Veterinary Parasitology (WAAVP) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol 44(1-2):35–44. CrossRefPubMedGoogle Scholar
  13. Daniel-Mwambete K, Torrado S, Cuesta-Bandera C, Ponce-Gordo F, Torrado JJ (2004) Effect of solubilization on the oral bioavailability of three benzimidazole carbamate drugs. Int J Pharm 272(1-2):29–36. CrossRefPubMedGoogle Scholar
  14. Delatour P, Cure MC, Benoit E, Garnier F (1986) Netobimin (totabin-SCH): preliminary investigation on metabolism and pharmacology. J Vet Pharmacol Ther 9(3):230–234. CrossRefPubMedGoogle Scholar
  15. Dezani AB (2010) Avaliação in vitro da solubilidade e da permeabilidade da lamivudina e da zidovudina. Aplicações na classificação biofarmacêutica. Dissertation, University of São PauloGoogle Scholar
  16. Ehteda A, Galettis P, Chu SW, Pillai K, Morris DL (2012) Complexation of albendazole with hydroxypropyl-β-cyclodextrin significantly improves its pharmacokinetic profile, cell cytotoxicity and antitumor efficacy in nude mice. Anticancer Res 32(9):3659–3666PubMedGoogle Scholar
  17. Evrard B, Chiap P, De Tullio P, Ghalmi F, Piel G, Van Hees T, Crommen J, Losson B, Delattre L (2002) Oral bioavailability in sheep of albendazole from a suspension and from a solution containing hydroxypropyl-β-cyclodextrin. J Control Release 85(1-3):45–50. CrossRefPubMedGoogle Scholar
  18. García A, Leonardi D, Salazar MO, Lamas MC (2014) Modified β-cyclodextrin inclusion complex to improve the physicochemical properties of albendazole. Complete in vitro evaluation and characterization. PLoS One 9(2):e88234.Google Scholar
  19. Gokbulut C, Bilgili A, Hanedan B, McKellar QA (2007) Comparative plasma disposition of fenbendazole, oxfendazole and albendazole in dogs. Vet Parasitol 148(3-4):279–287. CrossRefPubMedGoogle Scholar
  20. Higuchi T, Connors KA (1965) Phase-solubility techniques. Adv Anal Chem Instrum 4:117–122Google Scholar
  21. Kawabata Y, Wada K, Nakatani M, Yamada S, Onoue S (2011) Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 420(1):1–10. CrossRefPubMedGoogle Scholar
  22. Kurkov SV, Loftsson T (2013) Cyclodextrins. Int J Pharm 453(1):167–180. CrossRefPubMedGoogle Scholar
  23. Lanusse C, Alvarez L, Lifschitz A (2014) Pharmacological knowledge and sustainable anthelmintic therapy in ruminants. Vet Parasitol 204(1-2):18–33. CrossRefPubMedGoogle Scholar
  24. Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Drug Deliv Rev 59(7):645–666. CrossRefGoogle Scholar
  25. Loftsson T, Hreinsdóttir D, Másson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302(1-2):18–28. CrossRefPubMedGoogle Scholar
  26. Martin RJ (1997) Modes of action of anthelmintic drugs. Vet J 154:11–34CrossRefPubMedGoogle Scholar
  27. Martinez-Marcos L, Lamprou DA, McBurney RT, Halbert GW (2016) A novel hot-melt extrusion formulation of albendazole for increasing dissolution properties. Int J Pharm 499(1-2):175–185. CrossRefPubMedGoogle Scholar
  28. Messner M, Kurkov SV, Jansook P, Loftsson T (2010) Self-assembled cyclodextrin aggregates and nanoparticles. Int J Pharm 387(1-2):199–208. CrossRefPubMedGoogle Scholar
  29. Molento MB (2004) Resistência de helmintos em ovinos e caprinos. Revista Brasileira de ParasitologiaVeterinária 13:82–87Google Scholar
  30. Moreno L, Echevarria F, Muñoz F, Alvrez L, Bruni SS, Lanusse C (2004) Dose-dependent activity of albendazole against benzimidazole-resistant nematodes in sheep: relationship between pharmacokinetics and efficacy. Exp Parasitol 106(3-4):150–157. CrossRefPubMedGoogle Scholar
  31. Moriwaki C, Costa GL, Ferracini CN, De Moraes FF, Zanin GM, Pineda EAG, Matioli G (2008) Enhancement of solubility of albendazole by complexation with β-cyclodextrin. Braz J Chem Eng 25(2):255–267. CrossRefGoogle Scholar
  32. Narang AS, Boddu SH (2015) Excipient applications in formulation design and drug delivery. Springer International Publishing, New York, pp 1–10CrossRefGoogle Scholar
  33. Palomares-Alonso F, González CR, Bernad-Bernad MJ, Montie MD, Hernández GP, González-Hernández I, Castro-Torres N, Estrada EP, Jung-Cook H (2010) Two novel ternary albendazole-cyclodextrin-polymer systems: dissolution, bioavailability and efficacy against Taenia crassiceps cysts. Acta Trop 113(1):56–60. CrossRefPubMedGoogle Scholar
  34. Pensel PE, Castro S, Allemandi D, Bruni SS, Palma SD, Elissondo MC (2014) Enhanced chemoprophylatic and clinical efficacy of albendazole formulated as solid dispersions in experimental cystic echinococcosis. Vet Parasitol 203(1-2):80–86. CrossRefPubMedGoogle Scholar
  35. Prietsch RF, Pereira RA, Corrêa MN, Del Pino FAB (2014) Formas farmacêuticas de liberação modificada utilizadas em ruminantes: uma revisão. Sci Anim Health 2:3–26. Google Scholar
  36. Santos C, Buera MP, Mazzobre MF (2011) Phase solubility studies and stability of cholesterol/β-cyclodextrin inclusion complexes. J Sci Food Agric 91(14):2551–2557. CrossRefPubMedGoogle Scholar
  37. Schwarz W (1990) PVP: a critical review of the kinetics and toxicology of polyvinylpyrrolidone (povidone). CRC Press, Boca RatonGoogle Scholar
  38. Soares-Sobrinho JL, Santos FLA, Lyra MAM, Alves LDS, Rolim LA, Lima AAN, Nunes LCC, Soares MFR, Rolim-Neto PJ, Torres-Labandeira JJ (2012) Benznidazole drug delivery by binary and multicomponent inclusion complexes using cyclodextrins and polymers. Carbohydr Polym 89(2):323–330. CrossRefPubMedGoogle Scholar
  39. Sullivan SP, Koutsonanos DG, del Pilar Martin M, Lee JW, Zarnitsyn V, Choi SO, Prausnitz MR (2010) Dissolving polymer microneedle patches for influenza vaccination. Nat Med 16(8):915–920. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ueno H, Gonçalves PC (1998) Manual para diagnóstico das helmintoses de ruminantes, 4th edn. Japan International Cooperation Agency, TokyoGoogle Scholar
  41. Villanova JCO, Sá VR (2009) Excipientes: guia prático para padronização. Pharmabooks, São PauloGoogle Scholar
  42. Waller PJ (1997) Anthelmintic resistance. Vet Parasitol 72(3-4):391–412. CrossRefPubMedGoogle Scholar
  43. Woodgate RG, Cornell AJ, Sangster NC (2017) Occurrence, measurement and clinical perspectives of drug resistance in important parasitic helminths of livestock. In: Mayers DL, Sobel JD, Ouellette M, Kaye KS, Marchaim D (eds) Antimicrobial drug resistance: clinical and epidemiological aspects. Springer International Publishing, Cham, pp 1305–1326. CrossRefGoogle Scholar
  44. Zhang XN, Tang LH, Gong JH, Xu XY, Zhang Q (2006) Alternative albendazole polybutylcyanoacrylate nanoparticles preparation, pharmaceutical properties and tissue distribution in rats. Lett Drug Des Discovery 3(4):275–280. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. A. Pacheco
    • 1
  • L. N. C. Rodrigues
    • 2
  • J. F. S. Ferreira
    • 3
  • A. C. P. Gomes
    • 1
  • C. J. Veríssimo
    • 1
  • H. Louvandini
    • 4
  • R. L. D. Costa
    • 1
  • L. M. Katiki
    • 1
  1. 1.Instituto de Zootecnia (IZ/APTA/SAA)Nova OdessaBrazil
  2. 2.Universidade Federal de São Paulo (ICAQF/UNIFESP)DiademaBrazil
  3. 3.US Salinity Lab (USDA-ARS)RiversideUSA
  4. 4.Centro de Energia Nuclear na Agricultura (USP)PiracicabaBrazil

Personalised recommendations