Skip to main content
Log in

Community of arthropod ectoparasites of two species of Turdus Linnaeus, 1758 (Passeriformes: Turdidae) in southern Rio Grande do Sul, Brazil

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

This study was aimed at describing the community of arthropod ectoparasites associated with sympatric populations of Turdus amaurochalinus and Turdus rufiventris and analyzing the aggregation patterns of the chewing lice species, during reproductive and nonreproductive periods, of both Turdus species in three areas of the Atlantic forest in southern Rio Grande do Sul state (RS), Brazil. Altogether, we captured 36 specimens of T. amaurochalinus and 53 specimens of T. rufiventris. We identified two families of chewing lice, Menoponidae and Philopteridae, with Myrsidea and Brueelia as the most prevalent and abundant on both host birds. The lowest aggregation levels of chewing lice Myrsidea and Brueelia occurred during the reproductive period of both host species, suggesting a reproductive synchronization and a dispersion period. The most prevalent feather mite on T. amaurochalinus was Proctophyllodes weigoldi, and on T. rufiventris, Trouessartia serrana. Analges sp. and Pteronyssoides sp. were not observed on T. rufiventris. We identified three species of ticks; Ixodes auritulus was the most prevalent and abundant on the birds. Ornithoica vicina was the only hippoboscid fly collected, and only on T. amaurochalinus. The richness of ectoparasites was greater on T. amaurochalinus than on T. rufiventris. For T. amaurochalinus, the mean richness was lesser in winter compared to spring and autumn; however, we observed no variation in the mean richness of ectoparasites for T. rufiventris during the same seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altizer S, Davis AK, Cook KC, Cherry JJ (2004) Age, sex, and season affect the risk of mycoplasmal conjunctivitis in a southeastern house finch population. Can J Zool 82:755–763. doi:10.1139/Z04-050

    Article  Google Scholar 

  • Anderson RM, May RM (1979) Population biology of infectious diseases: part I. Nature 280:361–367

    Article  PubMed  CAS  Google Scholar 

  • Arzua M, Barros-Battesti DM (1999) Parasitism of Ixodes (Multidentatus) auritulus Neumann (Acari: Ixodidae) on birds from the City of Curitiba, State of Paraná, Southern Brazil. Mem Inst Oswaldo Cruz 94(5):597–603

    Article  PubMed  CAS  Google Scholar 

  • Atyeo WT, Braasch NL (1966) The feather mite genus Proctophyllodes (Sarcoptiformes: Proctophyllodidae). Bull Univ Neb State Mus 5:1–354

    Google Scholar 

  • Blanco G, Frías O (2001) Symbiotic feather mites synchronize dispersal and population growth with host sociality and migratory disposition. Ecography 24(2):113–120. doi:10.1034/j.1600-0587.2001.240201.x

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1990) Ecology—individuals, populations and communities. Blackwell Scientific Publications, London

    Google Scholar 

  • Belton W (2004) Aves do Rio Grande do Sul, distribuição e biologia, 4th edn. Fundação Zoobotânica do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83(4):575–583

    Article  PubMed  CAS  Google Scholar 

  • Castro DC, Cicchino AC (1978) Contribucion al conocimiento de los malofagos argentinos III. Sobre algunos Menoponidae de la avifauna Bonaerense: Menacanthus eurysternus (Burmeister) y Menacanthus pici (Denny) (Insecta: Mallophaga). Rev Soc Entomol Arg 37:77–83

    Google Scholar 

  • Černý V (1974) Parasitic mites of Surinam XIX. Seven new species of Mesalgoides (Analgoidea, Analgidae). Folia Parasitol 21:243–250

    PubMed  Google Scholar 

  • Cicchino AC (1985) Contribucion al conocimiento de los malofagos argentinos XIX. Cuatro nuevas especies del genero Brueelia Keler 1936 (Philoptheridae) parasitas de especies de Turdus Linne 1758 (Aves, Passeriformes, Muscicapidae, Turdinae). Rev Soc Entomol Arg 44:91–102

    Google Scholar 

  • Clayton DH (1991) Coevolution of avian grooming and ectoparasite avoidance. In: Loye JE, Zuk M (eds) Bird–parasite interactions: ecology, behavior and evolution. Oxford University Press, Oxford, pp 258–289

    Google Scholar 

  • Clayton DH (1990) Mate choice in experimentally parasited rock doves: louse males lose. Am Zool 30:251–262

    Google Scholar 

  • Clayton DH, Gregory RD, Price RD (1992) Comparative ecology of neotropical bird lice (Insecta: Phthiraptera). J Anim Ecol 61:781–795

    Article  Google Scholar 

  • Clayton DH, Walther BA (2001) Influence of host ecology and morphology on the diversity of Neotropical bird lice. Oikos 94:455–467. doi:10.1034/j.1600-0706.2001.940308.x

    Article  Google Scholar 

  • Clifford CM, Carleton M, Keirans JE, Kohls GM (1973) Systematics of the subfamily Ixodinae (Acarina: Ixodidae). I. The subgenera of Ixodes. Ann Entomol Soc Am 66(3):489–500

    Google Scholar 

  • Comitê Brasileiro de Registros Ornitológicos (2011) Listas das aves do Brasil. http://www.cbro.org.br. Accessed 07 April 2011

  • Crawley MJ (2007) The R book. John Wiley & Sons Ltd., Chichester

    Book  Google Scholar 

  • Davidson WR, Siefren DA, Creekmore LH (1994) Seasonal and annual abundance of Amblyomma americanum (Acari: Ixodidae) in Central Georgia. J Med Entomol 31:67–71

    PubMed  CAS  Google Scholar 

  • Del Hoyo J, Elliot A, Christie DA (2005) Handbook of the birds of the world, vol. 10. Cuckoo-shrikes to thrushes. Lynx Edicions, Barcelona, Spain

    Google Scholar 

  • Dobzhansky T (1950) Evolution in the tropics. Am Sci 38:209–221

    Google Scholar 

  • Durden LA, Keirans JE (1996) Nymphs of the genus Ixodes (Acari: Ixodidae) of the United States: taxonomy, identification key, distribution, hosts, and medical/veterinary importance. Entomological Society of America, Maryland

    Google Scholar 

  • Enout AMJ, Lobato DN, Azevedo CS, Antonini Y (2009) Parasitismo por malófagos (Insecta) e ácaros (Acari) em Turdus leucomelas (Aves) nas estações reprodutiva e de muda de penas no Parque Estadual do Rio Preto, Minas Gerais, Brasil. Zoologia 26(3):534–540

    Google Scholar 

  • Fontana CS (2004) Estrutura de uma comunidade urbana de aves: um experimento em Porto Alegre, Rio Grande do Sul. Ph.D. thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil

  • Gasperin G, Pizo MA (2009) Frugivory and habitat use by thrushes (Turdus spp.) in a suburban area in south Brazil. Urban Ecosyst 12(4):425–436. doi:10.1007/s11252-009-0090-2

    Article  Google Scholar 

  • Gaud J, Atyeo WT (1996) Feather mites of the world (Acarina, Astigmata): the supraspecific taxa. (Part. I). Ann Mus R L’Afr Cent Sci Zool 277:1–187

    Google Scholar 

  • Graciolli G, Carvalho CJB (2003) Hippoboscidae (Diptera, Hippoboscoidea) no Estado do Paraná: chaves de identificação, hospedeiros e distribuição geográfica. Rev Bras Zool 20:667–674

    Article  Google Scholar 

  • Hale KA, Briskie JV (2009) Rapid recovery of an island population of the threatened South Island Saddleback Philesturnus c. carunculatus after a pathogen outbreak. Bird Conser Internatn 19(3):239–253. doi:10.1017/S0959270909008193

    Article  Google Scholar 

  • Hamstra TL, Badyaev AV (2009) Comprehensive investigation of ectoparasite community and abundance across life history stages of avian host. J Zool 278(2):91–99. doi:10.1111/j.1469-7998.2008.00547.x

    Article  Google Scholar 

  • Heeb P, Kolliker M, Richner H (2000) Bird-ectoparasite interactions, nest humidity and ectoparasite community structure. Ecology 81(4):958–968

    Google Scholar 

  • Hernandes FA, Valim MP (2005) A new species of Pterodectes Robin, 1877 (Proctophyllodidae: Pterodectinae) from the pale-breasted thrush, Turdus leucomelas (Passeriformes: Turdidae). Zootaxa 1081:61–68

    Google Scholar 

  • Holmes JC, Price PW (1986) Communities of parasites. In: Kikkawa J, Anderson DJ (eds) Community ecology: pattern and process. Blackwell Scientific Publications, Oxford, pp 187–213

    Google Scholar 

  • Janovy J Jr (1997) Protozoa, helminths, and arthropods of birds. In: Clayton DH, Moore J (eds) Host–parasite evolution. General principles and avian models. Oxford University Press, Oxford, pp 303–337

    Google Scholar 

  • Jovani R, Serrano D (2001) Feather mites (Astigmata) avoid moulting wing feather of passerine birds. Anim Behav 62(4):723–727. doi:10.1006/anbe.2001.1814

    Article  Google Scholar 

  • Kanegae MF, Valim M, Fonseca MA, Marini MÂ, Serra Freire NM (2008) Ácaros plumícolas (Acari: Astigmata) em aves do Cerrado do Distrito Federal, Brasil. Biota Neotrop 8(4):31–39

    Article  Google Scholar 

  • Keirans JE, Durden LA (1998) Illustrated key to nymphs of the tick genus Amblyomma found in the United States. J Med Entomol 35(4):489–495

    PubMed  CAS  Google Scholar 

  • Kidd H, James DR (1991) The Agrochemicals Handbook. Royal Society of Chemistry Information Services, Cambridge

    Google Scholar 

  • Labruna MB, Sanfilippo LF, Demetrio C, Menezes AC, Pinter A, Guglielmone AA, Silveira LF (2007) Ticks collected on birds in the state of São Paulo, Brazil. Exp Appl Acarol 43(2):147–160. doi:10.1007/s10493-007-9106-x

    Article  PubMed  Google Scholar 

  • Linardi PM, Botelho JR, Cunha HC (1985) Ectoparasitos de roedores da região urbana de Belo Horizonte, MG. Índices pulicilianos, anoplurianos e acarinos em Rattus norvegicus norvegicus. Mem Inst Oswaldo Cruz 80:277–284

    PubMed  CAS  Google Scholar 

  • Lindell CA, Gavin TA, Price RD, Sanders AL (2002) Chewing louse distributions on two neotropical thrush species. Comp Parasitol 69(2):212–217. doi:10.1654/1525-2647(2002)069[0212:CLDOTN]2.0.CO;2

    Article  Google Scholar 

  • Loye J, Carrol S (1995) Birds, bugs and blood: avian parasitism and conservation. Trends Ecol Evol 10(6):232–235

    Article  PubMed  CAS  Google Scholar 

  • Marini MA, Reinert BL, Bornschein MR, Pinto JC, Pichorim MA (1996) Ecological correlates of ectoparasitism on Atlantic Forest birds, Brazil. Ararajuba 14:93–103

    Google Scholar 

  • Marshall AG (1981) The ecology of ectoparasitic insects. Academic, London

    Google Scholar 

  • Martins TF, Onofrio VC, Barros-Battesti DM, Labruna MB (2010) Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: descriptions, redescriptions, and identification key. Ticks Tick-borne Dis 1(2):75–99. doi:10.1016/j.ttbdis.2010.03.002

    Article  PubMed  Google Scholar 

  • Møller AP, Rózsa L (2005) Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts. Oecologia 142(2):169–176. doi:10.1007/s00442-004-1735-8

    Article  PubMed  Google Scholar 

  • Morand S, Poulin R (1998) Density, body mass and parasite species richness of terrestrial mammals. Evol Ecol 12:717–727

    Article  Google Scholar 

  • Moreno JA (1961) Clima do Rio Grande do Sul. Secção de Geografia. Secretaria da Agricultura, Porto Alegre

    Google Scholar 

  • Moyer BR, Drown DM, Clayton DH (2002) Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos 97(2):223–228

    Article  Google Scholar 

  • Onofrio VC, Barros-Battesti DM, Labruna MB, Faccini JLH (2009) Diagnoses of and illustrated key to the species of Ixodes Latreille, 1795 (Acari: Ixodidae) from Brazil. Syst Parasitol 72(2):143–157. doi:10.1007/s11230-008-9169-z

    Article  PubMed  Google Scholar 

  • Oorebeek M, Kleindorfer S (2008) Climate or host availability: what determines the seasonal abundance of ticks? Parasitol Res 103(4):871–875. doi:10.1007/s00436-008-1071-8

    Article  PubMed  Google Scholar 

  • Palma RL (1978) Slide-mounting of lice: a detailed description of the Canadá Balsan technique. N Z Entomol 6:432–436

    Google Scholar 

  • Poulin R (2007) Are there general laws in parasite ecology? Parasitology 134(6):763–776. doi:10.1017/S0031182006002150

    Article  PubMed  CAS  Google Scholar 

  • Poulin R (1997) Species richness of parasite assemblages: evolution and patterns. Annu Rev Ecol Syst 28:341–358

    Article  Google Scholar 

  • Price RD (1975) The Menacanthus eurysternus complex (Mallophaga: Menoponidae) of the Passeriformes e Piciformes (Aves). Ann Entomol Soc Am 68:617–622

    Google Scholar 

  • Price RD, Hellenthal RA, Palma RL (2003) World checklist of chewing lice with host associations and keys to families and genera. In: Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH (ed). The chewing lice; world checklist and biological overview. Illinois Natural History Survey Special Publication 24, pp 1–501

  • Rambo B (1994) A fisionomia do Rio Grande do Sul, 3rd edn. Unisinos, São Leopoldo

    Google Scholar 

  • R Development Team (2009) R: A Language and environment for statistical computing. 2.8.1 edn. R Foundation for Statistical Computing, Vienna

  • Reiczigel J, Rózsa L (2005) Quantitative parasitology 3.0. Budapest

  • Rózsa L (1997) Patterns in the abundance of avian lice (Phthiraptera: Amblycera, Ischnocera). J Avian Biol 28:249–254

    Article  Google Scholar 

  • Santana FJ (1976) A review of the genus Trouessartia (Analgoidea: Alloptidae). J Med Entomol 1:1–128

    Google Scholar 

  • Shaw DJ, Dobson AP (1995) Patterns of parasite abundance and aggregation in wildlife populations: a quantitative review. Parasitology 111(Suppl.):S111–S133

    Article  PubMed  Google Scholar 

  • Sick H (1997) Ornitologia Brasileira. Nova Fronteira, Rio de Janeiro

  • Sorci G, Clobert J, Michalakis Y (1996) Cost of reproduction and cost of parasitism in the common lizard Lacerta vivipara. Oikos 76(1):121–130

    Article  Google Scholar 

  • Storni A, Alves MAS, Valim MP (2005) Ácaros de penas e carrapatos (Acari) associados a Turdus albicollis Vieillot (Aves, Muscicapidae) em uma área de Mata Atlântica da Ilha Grande, Rio de Janeiro, Brasil. Rev Bras Zool 22:419–423

    Article  Google Scholar 

  • Szabó MPJ, Labruna MB, Garcia MV, Pinter A, Castagnolli KC, Pacheco RC, Castro MB, Veronez VA, Magalhães GM, Vogliotti A, Duarte JMB (2009) Ecological aspects of the free-living ticks (Acari: Ixodidae) on animal trails within Atlantic rainforest in south–eastern Brazil. Ann Trop Med Parasitol 103(1):57–72. doi:10.1179/136485909X384956

    Article  PubMed  Google Scholar 

  • Teixeira MB, Coura Neto AB, Pastore U, Rangel Filho LR (1986) Vegetação. As regiões fitoecológicas, sua natureza e seus recursos econômicos. Estudo fitogeográfico. In: Levantamento de recursos naturais. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro, v. 33, pp 541–632

  • Tella JL, Blanco G, Forero MG, Gajón Á, Donázar JA, Hiraldo F (1999) Habitat, world geographic range, and embryonic development of hosts explain the prevalence of avian hematozoa at small and phylogenetic scales. Proc Natl Acad Sci USA 96(4):1785–1789. doi:10.1073/pnas.96.4.1785

    Article  PubMed  CAS  Google Scholar 

  • Tomlin CDS (2006) The pesticide manual: a world compendium. British Crop Production Council, England

    Google Scholar 

  • Valim MP, Hernandes FA (2006) Redescriptions of four species of the feather mite genus Pterodectes Robin, 1877 (Acari: Proctophyllodidae: Pterodectinae) described by Herbert F. Berla. Acarina 14(1):41–55

    Google Scholar 

  • Veloso HP, Góes-Filho L (1982) Fitogeografia brasileira: classificação fisionômico-ecológica da vegetação neotropical. Boletim Técnico Projeto Radambrasil, Série Vegetação 1:1–80

    Google Scholar 

  • Venzal JM, Félix ML, Olmos A, Mangold AJ, Guglielmone AA (2005) A collection of ticks (Ixodidae) from wild birds in Uruguay. Exp Appl Acarol 36(4):325–331. doi:10.1007/s10493-005-8433-z

    Article  PubMed  CAS  Google Scholar 

  • Walther BA, Clayton DH (1997) Dust-ruffling: a simple method for quantifying ectoparasite loads of live birds. J Field Ornithol 68:509–518

    Google Scholar 

  • Wheller TA, Threlfall W (1986) Observations on the ectoparasites of some Newfoundland passerines (Aves: Passeriformes). Can J Zool 64:630–636

    Article  Google Scholar 

  • Wiles PR, Cameron J, Behnke JM, Hartley IR, Gilbert FS, McGregor PK (2000) Season and ambient air temperature influence the distribution of mites (Proctophyllodes stylifer) across the wings of blue tits (Parus caeruleus). Can J Zool 78:1397–1407

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Michel Paiva Valim for the help in the identification of species of chewing lice and feather mites as well as comments on this manuscript, Ph.D student of the Graduate Program in Parasitology (UFPel), Carolina Silveira Mascarenhas, for helping in the identification of chewing lice and gender determination, and Ph.D. Jason Weckstein (FMNH), Dr. Demétrio Luis Guadagnin (UFSM), and Dr. Ana Beatriz Barros de Moraes (UFSM) for their comments and suggestions to this study. Financial support was provided by a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) granted to H. L. da C. Amaral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Leonardo da Cunha Amaral.

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Cunha Amaral, H.L., Bergmann, F.B., dos Santos, P.R.S. et al. Community of arthropod ectoparasites of two species of Turdus Linnaeus, 1758 (Passeriformes: Turdidae) in southern Rio Grande do Sul, Brazil. Parasitol Res 112, 621–628 (2013). https://doi.org/10.1007/s00436-012-3174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-012-3174-5

Keywords

Navigation