Skip to main content
Log in

Catalysis of NADH→NADP+ transhydrogenation by adult Hymenolepis diminuta mitochondria

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Hymenolepis diminuta mitochondria catalyze nonenergy-linked and energy-linked NADH→NADP+ transhydrogenations, with the latter driven by electron-transport dependent NADH oxidation (electron transport-driven, ETD) or ATP hydrolysis (ATP-driven, ATPD). Using submitochondrial particles, NADH→NADP+ transhydrogenations were characterized further. ETD and ATPD reactions were enhanced by bovine serum albumin (BSA) and were inhibited by N,N′-dicyclohexylcarbodiimide (DCCD), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), and niclosamide. The nonenergy-linked reaction was unaffected by these additives. Except for DCCD inhibition of the ATPD reaction, BSA mitigated inhibitor effects on energy-linked activities. BSA enhanced NADH oxidase (but not ATPase) activity. Although DCCD inhibited NADH oxidase and ATPase, BSA only lessened oxidase inhibition. With protonophores, an increase in NADH oxidase (but not ATPase) activity was suggested. Oxidase inhibition by rotenone was unaffected by BSA. The ATP-hydrolyzed/NADPH-formed for the ATPD reaction was almost unity. A model for H. diminuta energy-linked transhydrogenation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Beechey RB, Knight IG (1978) The effects of carbodiimides on functions associated with the energy-conservation mechanism in beef heart sub-mitochondrial particles. J Bioenerg Biomembr 10:89–100

    Article  PubMed  CAS  Google Scholar 

  • Choi JK, Ho J, Curry S, Qin D, Bittman R, Hamilton JA (2002) Interactions of very long-chain saturated fatty acids with serum albumin. J Lipid Res 43:1000–1010

    Article  PubMed  CAS  Google Scholar 

  • Danielson L, Ernster L (1963) Demonstration of a mitochondrial energy-dependent, pyridine nucleotide transhydrogenase reaction. Biochem Biophys Res Commun 10:91–96

    Article  PubMed  CAS  Google Scholar 

  • Doak GA, Zahler WL (1979) Stimulation of bull sperm hyaluronidase by polycations. Biochim Biophys Acta 570:303–310

    PubMed  CAS  Google Scholar 

  • Douch P, Gahagan H (1977) The metabolism of niclosamide and related compounds by Monieza expansa, Ascaris lubricoides var suum and mouse and sheep liver enzymes. Zenobiotica 7:301–307

    Article  CAS  Google Scholar 

  • Fioravanti CF (1981) Coupling of mitochondrial NADPH:NAD transhydrogenase with electron transport in adult Hymenolepis diminuta. J Parasitol 67:823–831

    Article  PubMed  CAS  Google Scholar 

  • Fioravanti CF (1982a) Mitochondrial NADH oxidase activity of adult Hymenolepis diminuta (Cestoda). Comp Biochem Physiol B 72:591–596

    Article  PubMed  CAS  Google Scholar 

  • Fioravanti CF (1982b) Mitochondrial malate dehydrogenase, decarboxylating (“malic” enzyme) and transhydrogenase activities of adult Hymenolepis microstoma (Cestoda). J Parasitol 68:213–220

    Article  PubMed  CAS  Google Scholar 

  • Fioravanti C, Kim Y (1983) Phospholipid dependence of the Hymenolepis diminuta mitochondrial NADPH:NAD transhydrogenase. J Parasitol 69:1048–1054

    Article  PubMed  CAS  Google Scholar 

  • Fioravanti CF, Saz HJ (1976) Pyridine nucleotide transhydrogenases of parasitic helminths. Arch Biochem Biophys 175:21–30

    Article  PubMed  CAS  Google Scholar 

  • Fioravanti CF, Saz HJ (1978) “Malic” enzyme, fumarate reductase and transhydrogenase systems in the mitochondria of adult Spirometra mansonoides (Cestoda). J Exp Zool 206:167–178

    Article  CAS  Google Scholar 

  • Fioravanti CF, McKelvey JR, Reisig JM (1992) Energy-linked mitochondrial pyridine nucleotide transhydrogenase of adult Hymenolepis diminuta. J Parasitol 78:774–778

    Article  PubMed  CAS  Google Scholar 

  • Fisher RR, Earle SR (1982) Membrane-bound pyridine dinucleotide transhydrogenases. In: Everse J, Anderson B, You KS (eds) The pyridine nucleotide coenzymes. Academic Press, New York, pp 279–324

    Google Scholar 

  • Fiske CH, Subbarow Y (1925) The colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Galante YM, Lee Y, Hatefi Y (1980) Effect of pH on the mitochondrial energy-linked and non-energy-linked transhydrogenation reactions. J Biol Chem 255:9641–9646

    PubMed  CAS  Google Scholar 

  • Gutman M, Singer TP, Casida JE (1970) Studies on the respiratory chain-linked reduced adenine dinucleotide dehydrogenase. XVII. Reaction sites of piericidin and rotenone. J Biol Chem 245:1992–1997

    PubMed  CAS  Google Scholar 

  • Hassinen IE, Vuokila PT (1993) Reaction of dicyclohexylcarbodiimide with mitochondrial proteins. Biochim Biophys Acta 114:107–124

    Google Scholar 

  • Heytler PG (1979) Uncouplers of oxidative phosphorylation. Methods Enzymol LV:462–472

  • Horgan DJ, Singer TP, Casida JE (1968) Studies on the respiratory chain-linked reduced nicotinamide adenine dinucleotide dehydrogenase. XIII. Binding sites of rotenone, piericidin A and amytal in the respiratory chain. J Biol Chem 243:834–843

    PubMed  CAS  Google Scholar 

  • Kean EA, Gutman M, Singer TP (1971) Studies on the respiratory chain-linked nicotinamide adenine dinucleotide dehydrogenase. XXII. Rhein, a competitive inhibitor of the dehydrogenase. J Biol Chem 246:2346–2353

    PubMed  CAS  Google Scholar 

  • Lee CP, Ernster L (1966) The energy-linked nicotinamide nucleotide transhydrogenase reaction: its characteristics and its use as a tool for the study of oxidative phosphorylation. In: Papa S, Quagliariello E, Slater EC, Tager JM (eds) Regulation of metabolic processes in mitochondria. BBA library, vol 7. Elsevier, New York, NY, pp 218–234

    Google Scholar 

  • Lee CP, Ernster L (1989) Energy-linked nicotinamide nucleotide transhydrogenase 1963–1988: a commentary by Chuan-Pu Lee and Lars Ernster. Biochim Biophys Acta 1000:371–376

    PubMed  CAS  Google Scholar 

  • Li T, Gracy RW, Harris BG (1972) Studies on enzymes of parasitic helminthes II: Purification and properties of “malic” enzyme from the tapeworm Hymenolepis diminuta. Arch Biochem Biophys 150:397–405

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • McKelvey JR, Fioravanti CF (1984) Coupling of “malic” enzyme and NADPH:NAD transhydrogenase in the energetics of Hymenolepis diminuta (Cestoda). Comp Biochem Physiol B 77:737–742

    Article  PubMed  CAS  Google Scholar 

  • McKelvey JR, Fioravanti CF (1985) Intramitochondrial localization of fumarate reductase, NADPH→NAD transhydrogenase, “malic” enzyme and fumarase in adult Hymenolepis diminuta. Mol Biochem Parasitol 17:253–263

    Article  PubMed  CAS  Google Scholar 

  • Mercer NA, McKelvey JR, Fioravanti CF (1999) Hymenolepis diminuta: catalysis of transmembrane proton translocation by mitochondrial NADPH→NAD transhydrogenase. Exp Parasitol 91:52–58

    Article  PubMed  CAS  Google Scholar 

  • Pullman ME, Penefsky HS, Datta A, Racker E (1960) Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble, dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem 235:3322–3329

    PubMed  CAS  Google Scholar 

  • Roberton AM, Holloway CT, Knight IG, Beechey RB (1968) A comparison of the effects of NN′-dicylohexylcarbodiimide, oligomycin A and aurovertin on energy-linked reactions in mitochondria and submitochondrial particles. Biochem J 108:445–456

    PubMed  CAS  Google Scholar 

  • Saz HJ, Berta J, Kowalski J (1972) Transhydrogenase and anaerobic phosphorylation in Hymenolepis diminuta mitochondria. Comp Biochem Physiol B Biochem Mol Biol 43:725–732

    Article  CAS  Google Scholar 

  • Scheibel LW, Saz HJ (1966) The pathway for anaerobic phosphorylation in Hymenolepis diminuta mitochondria. Comp Biochem Physiol 18:151–162

    Article  PubMed  CAS  Google Scholar 

  • Scheibel LW, Saz HJ, Bueding E (1968) The anaerobic incorporation of 32P into adenosine triphosphate by Hymenolepis diminuta. J Biol Chem 243:2229–2235

    PubMed  CAS  Google Scholar 

  • Sorimachi K, Yamazaki S, Yasumura Y (1992) Activation of apoalkaline phosphatase by serum albumin with Zn2+ in rat hepatoma cells. Cell Struct Funct (Japan) 17:271–276

    Article  CAS  Google Scholar 

  • Unnikrishnan LA, Raj RK (1995) Transhydrogenase activities and malate dismutation linked to fumarate reductase system in the filarial parasite Setaria digitata. Int J Parasitol 25:779–785

    Article  PubMed  CAS  Google Scholar 

  • Umezurike GM, Anya AO (1980) Nicotinamide nucleotide transhydrogenase in Fasciola gigantica. Comp Biochem Physiol B Biochem Mol Biol 65:575–577

    Article  Google Scholar 

  • Wang X, Kolattukudy PE (1995) Solubilization, purification and characterization of fatty acyl-CoA reductase from duck uropygial gland. Biochem Biophys Res Commun 208:210–215

    Article  PubMed  CAS  Google Scholar 

  • Zenka J, Propkopic J (1988) Transhydrogenase activities in the mitochondria of Taenia crassiceps cysticerci.  Folia Parasitol 35:31–36

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by a grant-in aid for research from Sigma Xi to J.P.P. and grant AI-15597 from the National Institutes of Health, United States Public Health Service (USPHS) to C.F.F. Animal research was conducted in accordance with the Animal Welfare Act, the Guide for the Care and Use of Laboratory Animals, and the United States Department of Agriculture (USDA) and USPHS policy at a USDA-registered USPHS assurance holding facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. F. Fioravanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J.P., Fioravanti, C.F. Catalysis of NADH→NADP+ transhydrogenation by adult Hymenolepis diminuta mitochondria. Parasitol Res 98, 200–206 (2006). https://doi.org/10.1007/s00436-005-0020-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-005-0020-z

Keywords

Navigation