, Volume 137, Issue 2, pp 273–289 | Cite as

Is there correlation between photophobia and troglomorphism in Neotropical cave millipedes (Spirostreptida, Pseudonannolenidae)?

  • Jéssica Scaglione Gallo
  • Maria Elina Bichuette
Original paper


Absence of light, typical of the subterranean environment can lead to the loss of synchronizers of physiological and behavioral activities, mainly those related to photoperiods and light perception. Cave-dwelling species present phototactic responses that vary from photonegative to photopositive ones. There are few studies focusing on reaction to light in millipedes and the most studied species are considered photophobic. In this study, we analyzed the phototactic response of cave-dwelling and epigean millipedes of the genus Pseudonannolene (Spirostreptida, Pseudonannolenidae). For this, the chamber choice method was used. We related the phototatic reactions to morphological characters that indicate troglomorphisms (e.g., eyes and melanic pigmentation). The eight-studied operational taxonomic unit (OTU) showed photophobic reaction to all light intensities tested (150, 500 and 1000 lx) and photophobia can be considered a plesiomorphic character in the group. The morphological analysis showed that the light response is negatively correlated to the number of ommatidia and ocular area, that is, the larger the area and the number of ommatidia, the more negative is the light response (photonegative), suggesting that the eyes are the main sensory organs in the perception of light and, apparently, the integument of Pseudonannolene is not related to light sensitivity, opposite to that observed for other millipede species.


Behavior Photonegativity Hypogean Morphology Myriapoda 



We specially thank Jonas E. Gallão, Diego M. von Schimonsky and Camile S. Fernandes for providing part of material studied here and for information on localities, to Ramiro H. dos Santos and Fabiano P. de Jesus for assistance in field; Camile S. Fernandes, Tamires Zepon and Diego M. von Schimonsky for suggestions on the work; to Carmem Fontanetti, Amazonas Chagas-Jr and Marcelo A. Fernandes, for criptics; to Angélica Maria Penteado Martins Dias, coordinator of National Institute of Science and Technology of the Hymenoptera Parasitoids from Brazilian Southeast Region, INCT Hympar Sudeste (in Portuguese)—FAPESP #2008/57949-4 and CNPq # 573802/2008-4, for stereomicroscope use; to Luciana B. R. Fernandes, for images obtained through the stereomicroscope; to Rodrigo V. Mello for editing the images; to Diego M. von Schimonsky for map production; to Bianca Rantin for helping with the English; to International Paper (Rafael Silva and Miguel Magela) for support and access to caves of Altinópolis. We also thank ICMBio (Instituto Chico Mendes de Conservação à Biodiversidade) for collection license (28992-7), to PPG-ERN (Programa de Pós-graduação em Ecologia e Recursos Naturais—UFSCar) for infrastructure to develop this work, to CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for Master scholarship to JSG (132457/2015-6) and partial financing to MEB (303715/2011-1), and to FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) for partial financing to MEB (2010/08459-4 and 2008/05678-7).

Compliance with ethical standards

Ethical approval

All experiments conducted in this study were in accordance with Brazilian laws involving invertebrates. The authorisation for keeping these invertebrates alive was part of our scientific collector’s permit granted by ICMBio (Instituto Chico Mendes de Conservação à Biodiversidade) number 28992-7.


  1. Alvares CA, Stape JL, Sentelhas PC, de Moraes G, Leonardo J, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. CrossRefGoogle Scholar
  2. Ayres M (2007) BioEstat 5.0: aplicações estatísticas nas áreas das ciências biológicas e médicas. Sociedade Civil Mamirauá, BelémGoogle Scholar
  3. Barlow CA (1957) A factorial analysis of distribution in three species of diplopods. Tijdschrift voor Entomologie 100:349–426Google Scholar
  4. Barr TC, Holsinger JR (1985) Speciation in Cave Faunas. Annu Rev Ecol Syst 16:313–337CrossRefGoogle Scholar
  5. Bessa E, Trajano E (2001) Light reaction and cryptobiotic habits in armoured catfishes, genus Ancistrus, from caves in Central and Northwest Brazil (Siluriformes: Loricariidae). Mémoires de biospéologie 28:29–37Google Scholar
  6. Bichuette ME (2003) Distribuição, biologia, ecologia populacional e comportamento de peixes subterrâneos, gênero Ituglanis (Siluriformes:Trichomycteridae) e Eigenmannia (Gymnotiformes: Sternopygidae) área cárstica de São Domingos, nordeste de Goiás. Tese (Doutorado em Zoologia). Instituto de Biociências, Universidade de São Paulo, São PauloGoogle Scholar
  7. Bichuette M, Trajano E (1999) Light reaction, spontaneous and feeding behaviour in epigean and cave Potamolithus species from upper Ribeira Valley, Southeastern Brazil (Mollusca: Gastropoda: Hydrobiidae). Mémoires de biospéologie 26:1–6Google Scholar
  8. Borowsky B (2011) Responses to light in two eyeless cave dwelling amphipods (Niphargus ictus and Niphargus frasassianus). J Crustacean Biol 31:613–616. CrossRefGoogle Scholar
  9. Brasil (2014) Ministério do Meio Ambiente Portaria nº 444 de 17 de Dezembro de 2014. Diário Oficial da União, Seção 1 245:121–126Google Scholar
  10. Causey N (1960) Speciation in North American Cave Millipedes. Am Midl Nat 64:116–122. CrossRefGoogle Scholar
  11. Christiansen K (1962) Proposition pour la classification des animaux cavernicoles. Spelunca 2:76–78Google Scholar
  12. Cloudsley-Thompson J (1951) On the responses to environmental stimuli, and the sensory physiology of Millipedes (Diplopoda). In: Proceedings of the Zoological Society of London, vol 2. Wiley Online Library, pp 253–277.
  13. Cullingford CHD (1962) Cave fauna and flora. British Caving, an introduction to speleology, 2 edn. Routledge and Kegan Paul, London, pp 347–389Google Scholar
  14. Culver DC (1982) Cave life: evolution and ecology. Harvard University Press, CambridgeCrossRefGoogle Scholar
  15. Enghoff H, Golovatch S, Short M, Stoev P, Wesener T (2015) Diplopoda—taxonomic overview. In: Minelli A (ed) The Myriapoda, vol 2. Brill, Netherlands, pp 363–453. Scholar
  16. Fišer Ž, Novak L, Luštrik R, Fišer C (2016) Light triggers habitat choice of eyeless subterranean but not of eyed surface amphipods. Sci Nat 103:1–12. CrossRefGoogle Scholar
  17. Fontanetti CS (2002) Taxonomic Importance of the Prefemoral Process of the first Pair of Legs in Males of the Genus Pseudonannolene (Diplopoda, Siprostreptida). Folia Biol-Krakow 50:199–202PubMedGoogle Scholar
  18. Fuhrmann H (1922) Beiträge zur Kenntnis der Hautsinnesorgane der Tracheaten. I. Die antennalen Sinnesorgane der Myriapoden. Zeitschrift für wissenschaftliche Zoologie 119:1–52Google Scholar
  19. Golovatch SI, Kime RD (2009) Millipede (Diplopoda) distributions: a review. Soil Org 81:565–597Google Scholar
  20. Hopkin SP, Read HJ (1992) The biology of millipedes. Oxford University Press, New YorkGoogle Scholar
  21. Iniesta LFM, Ferreira RL (2014) New species of Pseudonannolene Silvestri, 1895 from Brazilian limestone caves with comments on the potential distribution of the genus in South America (Spirostreptida: Pseudonannolenidae). Zootaxa 3846:361–397. CrossRefPubMedGoogle Scholar
  22. Iniesta LFM, Ferreira RL (2015) Pseudonannolene lundi n. sp., a new troglobitic millipede from a Brazilian limestone cave (Spirostreptida: Pseudonannolenidae). Zootaxa 3949:123–128. CrossRefPubMedGoogle Scholar
  23. Krell FT (2004) Parataxonomy vs. taxonomy in biodiversity studies—pitfalls and applicability of ‘morphospecies’ sorting. Biodivers conserv 13:795–812. CrossRefGoogle Scholar
  24. Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621CrossRefGoogle Scholar
  25. Langecker T (1992) Light sensitivity of cave vertebrates. Behavioral and morphological aspects. In: Camacho AI (ed) The natural history of biospeleology. Museo Nacional de Ciencias Naturales, Madrid, pp 295–326Google Scholar
  26. Makarov SE (2015) Diplopoda—integument. In: Minelli A (ed) The Myriapoda, vol 2. Brill, Netherlands, pp 69–99. Scholar
  27. Mauriès JP (1987) Cambalides nouveaux et peu connus d’Asie, d’Amérique et d’Océanie. II. Pseudonannolenidae, Choctellidae (Myriapoda, Diplopoda). Bull Mus natn Hist nat Paris 9:169–199Google Scholar
  28. McKillup SC (1988) Behaviour of the millipedes Ommatoiulus moreletii. Ophyiulus verruculiger and Oncocladosoma castaneum in response to visible light; an explanation for the invasion of houses by Ommatoiulus moreletii. J Zool 215:35–46. CrossRefGoogle Scholar
  29. Moracchioli N (1994) Estudo da Biologia de Aegla spp. Cavernícolas do Vale do Alto Rio Ribeira, São Paulo (Crustacea: Anomura: Aeglidae). Dissertação (Mestrado em Zoologia). Instituto de Biociências, Universidade de São Paulo, São PauloGoogle Scholar
  30. Müller CH, Sombke A (2015) Diplopoda—sense organs. In: Minelli A (ed) The Myriapoda, vol 2. Brill, Netherlands, pp 181–235. Scholar
  31. Park O, Roberts T, Harris S (1941) Preliminary analysis of activity of the cave crayfish, Cambarus pellucidus. Am Nat 154–171Google Scholar
  32. Parzefall J (1986) Behavioural ecology of cave-dwelling fishes. The behaviour of teleost fishes. Springer, Berlin, pp 433–445. Scholar
  33. Rantin B, Bichuette ME (2013) Phototactic behaviour of subterranean Copionodontinae Pinna, 1992 catfishes (Siluriformes, Trichomycteridae) from Chapada Diamantina, central Bahia, northeastern Brazil. Int J Speleol 42:7. CrossRefGoogle Scholar
  34. Schubart O (1944) Os Diplopodos de Pirassununga. Acta zool. Lilloana, 2:321–440Google Scholar
  35. Schubart O (1952) Diplopoda de Pirassununga IV. Adenda a fauna regional. Dusenia 3:403–420Google Scholar
  36. Toye S (1966) The reactions of three species of Nigerian millipedes (Spirostreptus assiniensis. Oxydesmus sp., and Habrodesmus falx) to light, humidity and temperature. Entomol Exp Appl 9:468–483. CrossRefGoogle Scholar
  37. Trajano E (1987) Fauna cavernícola brasileira: composição e caracterização preliminar. Rev Bras Zool 3:533–561. CrossRefGoogle Scholar
  38. Trajano E (1993) A review of biospeleology in Brazil. Bol Soc Venez Espeleol 27:18–23Google Scholar
  39. Trajano E, Cobolli M (2012) Evolution of Lineages. In: White WB, Culver DC (eds) Encyclopedia of caves, 2° edn. Academic, Oxford, pp 295–304CrossRefGoogle Scholar
  40. Trajano E, Gerhard P (1997) Light reaction in brazilian cave fishes (Siluriformes: Pimelodidae, Trichomycteridae, Loricaridae). Mémoires de biospéologie 24:127–138Google Scholar
  41. Trajano E, Souza A (1994) The behavior of Ancistrus cryptophthalmus, an armored blind catfish from caves of Central Brazil, with notes on syntopic Trichomycterus sp.(Siluriformes, Loricariidae, Trichomycteridae). Mémoires de Biospéologie 21:151–159Google Scholar
  42. Trajano E, Golovatch S, Geoffroy J, Pinto-da-Rocha R, Fontanetti C (2000) Synopsis of Brazilian cave-dwelling millipedes (Diplopoda). Papéis Avulsos de Zoologia 41:259–287Google Scholar
  43. Trajano E, Bichuette ME, Batalha MA (2012) Estudos ambientais em cavernas: os problemas da coleta, da identificação, da inclusão e dos índices. Espeleo-Tema 23:13–22Google Scholar
  44. Wilkens H (2010) Genes, modules, and the evolution of cave fish. Heredity, Edinburgh 105:413–422. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de Ecologia e Biologia EvolutivaUniversidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations