Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential

Abstract

Background

Exosomes are extracellular nanometric vesicles used by cells to communicate with each other. They are responsible for many pathological conditions, including tumors by transferring regulatory biomolecules that impact target cell activity. Because of their high concentration in exosomes compared with parental cells and the rest of exosomal content, specificity to the cell of origin, and their well-organized sorting mechanism, microRNAs (miRNAs) are thought to be the most potent exosomes cargo and used by scientists to track exosomes and to detect cell activity changes and prognosis in cancer early.

Purpose

In this review, the results of studies examining the role of exosomes in cancer pathophysiology and their clinical potential are discussed in detail.

Summary of the Findings

Tumor-derived exosomes (TDEs) mediate the dynamic changes of cancer growth and invasion, including local microenvironment remodeling, distance metastasis, angiogenesis, and tumor-associated immunosuppression. They also contribute to hypoxia-induced tumor progression and cancer cell drug resistance. As a result of exosomes being present in all body fluids, it is possible to have early accessible and less-invasive diagnostic and prognostic measures by forming a table for each cancer type and its matched specific miRNAs. Under testing, available therapeutic uses of exosomes include interference of exosomes biogenesis, secretion, or uptake, and recruitment of exosomes as target-specific drug delivery vehicles, and immunostimulatory agents for both cancer patients and healthy population to avoid cancer development from the start.

Conclusion

These data suggest that exosomes and exosomal microRNA are directly related to cancer progression mechanisms, and could be used in cancer early diagnosis, prognosis, and therapy.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Avan A, Tavakoly Sany SB, Ghayour-Mobarhan M, Rahimi HR, Tajfard M, Ferns G (2018) Serum C-reactive protein in the prediction of cardiovascular diseases: overview of the latest clinical studies and public health practice. J Cell Physiol 233(11):8508–8525

    CAS  PubMed  Google Scholar 

  2. Baglio SR, Lagerweij T, Pérez-Lanzón M, Ho XD, Léveillé N, Melo SA, Cleton-Jansen AM, Jordanova ES, Roncuzzi L, Greco M, Van Eijndhoven MA (2017) Blocking tumor-educated MSC paracrine activity halts osteosarcoma progression. Clin Cancer Res 23(14):3721–3733

    CAS  PubMed  Google Scholar 

  3. Balaj L, Lessard R, Dai L, Cho YJ, Pomeroy SL, Breakefield XO, Skog J (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun 2(1):1–9

    Google Scholar 

  4. Banks WA, Sharma P, Bullock KM, Hansen KM, Ludwig N, Whiteside TL (2020) Transport of extracellular vesicles across the blood-brain barrier: brain pharmacokinetics and effects of inflammation. Int J Mol Sci 21(12):4407

    CAS  PubMed Central  Google Scholar 

  5. Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, Le Chevalier T, Livartoski A, Barlesi F, Laplanche A, Ploix S (2016) Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5(4):e1071008

    PubMed  Google Scholar 

  6. Casazza A, Di Conza G, Wenes M, Finisguerra V, Deschoemaeker S, Mazzone M (2014) Tumor stroma: a complexity dictated by the hypoxic tumor microenvironment. Oncogene 33(14):1743–1754

    CAS  PubMed  Google Scholar 

  7. Chen WX, Liu XM, Lv MM, Chen L, Zhao JH, Zhong SL, Ji MH, Hu Q, Luo Z, Wu JZ, Tang JH (2014) Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS ONE 9(4):e95240

    PubMed  PubMed Central  Google Scholar 

  8. Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, Xia H (2018) Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature 560(7718):382–386

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chowdhury R, Webber JP, Gurney M, Mason MD, Tabi Z, Clayton A (2015) Cancer exosomes trigger mesenchymal stem cell differentiation into pro-angiogenic and pro-invasive myofibroblasts. Oncotarget 6(2):715

    PubMed  Google Scholar 

  10. Ciravolo V, Huber V, Ghedini GC, Venturelli E, Bianchi F, Campiglio M, Morelli D, Villa A, Mina PD, Menard S, Filipazzi P (2012) Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. J Cell Physiol 227(2):658–667

    CAS  PubMed  Google Scholar 

  11. Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, Becker A, Hoshino A, Mark MT, Molina H, Xiang J (2015) Pancreatic cancer exosomes initiate premetastatic niche formation in the liver. Nat Cell Biol 17(6):816–826

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Del Re M, Biasco E, Crucitta S, Derosa L, Rofi E, Orlandini C, Miccoli M, Galli L, Falcone A, Jenster GW, van Schaik RH (2017) The detection of androgen receptor splice variant 7 in plasma-derived exosomal RNA strongly predicts resistance to hormonal therapy in metastatic prostate cancer patients. Eur Urol 71(4):680–687

    PubMed  Google Scholar 

  13. Du FENG et al (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11.5:675–687

    Google Scholar 

  14. Fani M, Rezayi M, Meshkat Z, Rezaee SA, Makvandi M, Abouzari-Lotf E, Ferns GA (2019) Current approaches for detection of human T-lymphotropic virus Type 1: a systematic review. J Cell Physiol 234(8):12433–12441

    CAS  PubMed  Google Scholar 

  15. Goldie BJ, Dun MD, Lin M, Smith ND, Verrills NM, Dayas CV, Cairns MJ (2014) Activity-associated miRNA are packaged in Map1b-enriched exosomes released from depolarized neurons. Nucleic Acids Res 42(14):9195–9208

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Goradel NH, Mohammadi N, Haghi-Aminjan H, Farhood B, Negahdari B, Sahebkar A (2019) Regulation of tumor angiogenesis by microRNAs: state of the art. J Cell Physiol 234(2):1099–1110

    CAS  PubMed  Google Scholar 

  17. Guo X, Qiu W, Wang J, Liu Q, Qian M, Wang S, Zhang Z, Gao X, Chen Z, Guo Q, Xu J (2019) Glioma exosomes mediate the expansion and function of myeloid-derived suppressor cells through microRNA-29a/Hbp1 and microRNA-92a/Prkar1a pathways. Int J Cancer 144(12):3111–3126

    CAS  Google Scholar 

  18. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharmaceutica Sinica B 6(4):287–296

    PubMed  PubMed Central  Google Scholar 

  19. Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A (2021) Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochimica et Biophysica Acta (BBA) 1819(11–12):1154–1163

    Google Scholar 

  20. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Mark MT, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu Y, Rao SS, Wang ZX, Cao J, Tan YJ, Luo J, Li HM, Zhang WS, Chen CY, Xie H (2018) Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics 8(1):169

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang T, Deng CX (2019) Current progresses of exosomes as cancer diagnostic and prognostic biomarkers. Int J Biol Sci 15(1):1

    PubMed  PubMed Central  Google Scholar 

  23. Ikoma M, Gantt S, Casper C, Ogata Y, Zhang Q, Basom R, Dyen MR, Rose TM, Barcy S (2018) KSHV oral shedding and plasma viremia result in significant changes in the extracellular tumorigenic miRNA expression profile in individuals infected with the malaria parasite. PLoS ONE 13(2):e0192659

    PubMed  PubMed Central  Google Scholar 

  24. Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 91(4):431–437

    CAS  PubMed  Google Scholar 

  25. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    CAS  PubMed  Google Scholar 

  26. Kang X, Zuo Z, Hong W, Tang H, Geng W (2019) Progress of research on exosomes in the protection against ischemic brain injury. Front Neurosci 13:1149

    PubMed  PubMed Central  Google Scholar 

  27. Le M, Fernandez-Palomo C, McNeill FE, Seymour CB, Rainbow AJ, Mothersill CE (2017) Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: reconciling the mechanisms mediating the bystander effect. PLoS ONE 12(3):e0173685

    PubMed  PubMed Central  Google Scholar 

  28. Li L, Cao B, Liang X, Lu S, Luo H, Wang Z, Wang S, Jiang J, Lang J, Zhu G (2019) Microenvironmental oxygen pressure orchestrates an anti-and pro-tumoral γδ T cell equilibrium via tumor-derived exosomes. Oncogene 38(15):2830–2843

    CAS  PubMed  Google Scholar 

  29. Liu J, Fan L, Yu H, Zhang J, He Y, Feng D, Wang F, Li X, Liu Q, Li Y, Guo Z (2019) Endoplasmic reticulum stress causes liver cancer cells to release exosomal miR-23a-3p and up-regulate programmed death ligand 1 expression in macrophages. Hepatology 70(1):241–258

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lu Y, Chen L, Li L, Cao Y (2020) Exosomes derived from brain metastatic breast cancer cells destroy the blood-brain barrier by carrying lncRNA GS1–600G8.5. Bio Med Res Int 2020

  31. Marleau AM, Chen CS, Joyce JA, Tullis RH (2012) Exosome removal as a therapeutic adjuvant in cancer. J Transl Med 10(1):1–2

    Google Scholar 

  32. Mashreghi M, Azarpara H, Bazaz MR, Jafari A, Masoudifar A, Mirzaei H, Jaafari MR (2018) Angiogenesis biomarkers and their targeting ligands as potential targets for tumor angiogenesis. J Cell Physiol 233(4):2949–2965

    CAS  PubMed  Google Scholar 

  33. McAndrews KM, Kalluri R (2019) Mechanisms associated with biogenesis of exosomes in cancer. Mol Cancer 18(1):52

    PubMed  PubMed Central  Google Scholar 

  34. Milane L, Singh A, Mattheolabakis G, Suresh M, Amiji MM (2015) Exosome mediated communication within the tumor microenvironment. J Control Release 10(219):278–294

    Google Scholar 

  35. Montecalvo A, Larregina AT, Shufesky WJ, Beer Stolz D, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Pattabiraman DR, Weinberg RA (2014) Tackling the cancer stem cells—what challenges do they pose? Nat Rev Drug Discov 13(7):497–512

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pavlyukov MS, Yu H, Bastola S, Minata M, Shender VO, Lee Y, Zhang S, Wang J, Komarova S, Wang J, Yamaguchi S (2018) Apoptotic cell-derived extracellular vesicles promote malignancy of glioblastoma via intercellular transfer of splicing factors. Cancer Cell 34(1):119–135

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar CM, Nitadori-Hoshino A (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R (2019) Suppression of exosomal PD-L1 induces systemic antitumor immunity and memory. Cell 177(2):414–427

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rana S, Yue S, Stadel D, Zöller M (2012) Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int J Biochem Cell Biol 44(9):1574–1584

    CAS  PubMed  Google Scholar 

  41. Rasouli E, Basirun WJ, Rezayi M, Shameli K, Nourmohammadi E, Khandanlou R, Izadiyan Z, Sarkarizi HK (2018) Ultrasmall superparamagnetic Fe3O4 nanoparticles: honey-based green and facile synthesis and in vitro viability assay. Int J Nanomed 13:6903

    CAS  Google Scholar 

  42. Rezayi M, Farjami Z, Hosseini ZS, Ebrahimi N, Abouzari-Lotf E (2018) MicroRNA-based biosensors for early detection of cancers. Curr Pharm Des 24(39):4675–4680

    CAS  PubMed  Google Scholar 

  43. Ruivo CF, Adem B, Silva M, Melo SA (2017) The biology of cancer exosomes: insights and new perspectives. Can Res 77(23):6480–6488

    CAS  Google Scholar 

  44. Saari H, Lázaro-Ibáñez E, Viitala T, Vuorimaa-Laukkanen E, Siljander P, Yliperttula M (2015) Microvesicle-and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release 28(220):727–737

    Google Scholar 

  45. Sahebi R, Langari H, Fathinezhad Z, Bahari Sani Z, Avan A, Ghayour Mobarhan M, Rezayi M (2020) Exosomes: new insights into cancer mechanisms. J Cell Biochem 121(1):7–16

    CAS  PubMed  Google Scholar 

  46. Sany SB, Hashim R, Rezayi M, Rahman MA, Razavizadeh BB, Abouzari-lotf E, Karlen DJ (2015) Integrated ecological risk assessment of dioxin compounds. Environ Sci Pollut Res 22(15):11193–11208

    Google Scholar 

  47. Shepard A (2017) Vesicles of the future: exosomes and cancer research | Fulbright EndCap 2017, from https://www.youtube.com/watch?v=wcuSysYNcaI

  48. Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM (2016) Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 214(2):197–213

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sund M, Kalluri R (2009) Tumor stroma derived biomarkers in cancer. Cancer Metastasis Rev 28(1–2):177–183

    PubMed  PubMed Central  Google Scholar 

  50. Svensson KJ, Kucharzewska P, Christianson HC, Sköld S, Löfstedt T, Johansson MC, Mörgelin M, Bengzon J, Ruf W, Belting M (2011) Hypoxia triggers a pro-angiogenic pathway involving cancer cell microvesicles and PAR-2–mediated heparin-binding EGF signaling in endothelial cells. Proc Natl Acad Sci 108(32):13147–13152

    CAS  PubMed  Google Scholar 

  51. Tai YL, Chen KC, Hsieh JT, Shen TL (2018) Exosomes in cancer development and clinical applications. Cancer Sci 109(8):2364–2374

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Tamkovich SN, Tutanov OS, Laktionov PP (2016) Exosomes: Generation, structure, transport, biological activity, and diagnostic application. Biochem (Moscow) Supplement Ser A 10(3):163–173

    Google Scholar 

  53. Tang Z, Li D, Hou S, Zhu X (2020) The cancer exosomes: clinical implications, applications and challenges. Int J Cancer 146(11):2946–2959

    CAS  PubMed  Google Scholar 

  54. Tian T, Zhu YL, Zhou YY, Liang GF, Wang YY, Hu FH, Xiao ZD (2014) Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J Biol Chem 289(32):22258–22267

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9(6):654–659

    CAS  PubMed  Google Scholar 

  56. Xiao X, Yu S, Li S, Wu J, Ma R, Cao H, Zhu Y, Feng J (2014) Exosomes: decreased sensitivity of lung cancer A549 cells to cisplatin. PLoS ONE 9(2):e89534

    PubMed  PubMed Central  Google Scholar 

  57. Xu S, Wang J, Ding N, Hu W, Zhang X, Wang B, Hua J, Wei W, Zhu Q (2015) Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect. RNA Biol 12(12):1355–1363

    PubMed  PubMed Central  Google Scholar 

  58. Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genom Proteom Bioinf 13(1):17–24

    CAS  Google Scholar 

  59. Zhao H, Yang L, Baddour J, Achreja A, Bernard V, Moss T, Marini JC, Tudawe T, Seviour EG, San Lucas FA, Alvarez H (2016) Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. elife 5:e10250

    PubMed  PubMed Central  Google Scholar 

  60. Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, Yu Y, Chow A, O’Connor ST, Chin AR, Yen Y (2014) Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25(4):501–515

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

“Not applicable.” This review is a collection of information and a result of individual’s work and not related to any institution.

Funding

This work has no funding agency.

Author information

Affiliations

Authors

Contributions

Both ME and AS chose the article’s title. ME collected the data, then he wrote the manuscript and created the figures. He also made the modifications as suggested. AS supervised and scientifically guided ME.

Corresponding author

Correspondence to Mohamed Ibrahim Elewaily.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

Ethical approval is not applicable for this article. This article does not contain any studies with human or animal subjects.

Consent for publication

There are no human subjects in this article and informed consent is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elewaily, M.I., Elsergany, A.R. Emerging role of exosomes and exosomal microRNA in cancer: pathophysiology and clinical potential. J Cancer Res Clin Oncol 147, 637–648 (2021). https://doi.org/10.1007/s00432-021-03534-5

Download citation

Keywords

  • Exosomes
  • MicroRNA
  • Cancer pathophysiology
  • Cancer treatment
  • Cancer clinical potential
  • Immunotherapy