Skip to main content
Log in

5-Azacytidine modulates CpG methylation levels of EZH2 and NOTCH1 in myelodysplastic syndromes

  • Original Article – Clinical Oncology
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Molecular mechanisms of response to hypomethylating agents in patients with myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) still remain largely unknown. Therefore, the effects of 5-Azacytidine (Aza) on clonal architecture and DNA methylation were investigated in this study.

Methods

Using next-generation sequencing (NGS), 30 myeloid leukemia-associated genes were analyzed in 15 MDS/CMML patients with excellent response to Aza. Effects on methylation levels were analyzed by quantitative methylation analysis using pyrosequencing for the global methylation marker LINE-1 in patients and myeloid cell lines. Various myeloid cell lines and a healthy cohort were screened for methylation levels in 23 genes. Selected targets were verified on the MDS/CMML cohort.

Results

The study presented here showed a stable variant allele frequency and stable global methylation levels in responding patients. A significant demethylation of EZH2 and NOTCH1 was revealed in patients with Aza response.

Conclusions

A response to Aza is not associated with eradication of malignant clones, but rather with a stabilization of the clonal architecture. We suggest changes in CpG methylation levels of EZH2 and NOTCH1 as potential targets of epigenetic response to Aza treatment which may also serve as useful biomarkers after clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ades L, Sekeres MA, Wolfromm A, Teichman ML, Tiu RV, Itzykson R et al (2013) Predictive factors of response and survival among chronic myelomonocytic leukemia patients treated with azacitidine. Leuk Res 37(6):609–613

    Article  CAS  PubMed  Google Scholar 

  • Barchitta M, Quattrocchi A, Maugeri A, Vinciguerra M, Agodi A (2014) LINE-1 hypomethylation in blood and tissue samples as an epigenetic marker for cancer risk: a systematic review and meta-analysis. PLoS One 9(10):e109478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bollati V, Baccarelli A, Hou L, Bonzini M, Fustinoni S, Cavallo D et al (2007) Changes in DNA methylation patterns in subjects exposed to low-dose benzene. Cancer Res 67(3):876–880

    Article  CAS  PubMed  Google Scholar 

  • Calo E, Wysocka J (2013) Modification of enhancer chromatin: what, how, and why? Mol Cell 49(5):825–837

    Article  CAS  PubMed  Google Scholar 

  • Chang CW, Lu TP, She CX, Feng YC, Hsiao CK (2016) Gene-set analysis with CGI information for differential DNA methylation profiling. Sci Rep 19(6):24666

    Article  CAS  Google Scholar 

  • Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25(10):1010–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenaux P, Ades L (2009) Review of azacitidine trials in intermediate-2- and high-risk myelodysplastic syndromes. Leuk Res 33(Suppl 2):S7–11

    Article  CAS  PubMed  Google Scholar 

  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Finelli C, Giagounidis A et al (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10(3):223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E, Santini V, Gattermann N, Germing U et al (2010) Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia. J Clin Oncol 28(4):562–569

    Article  CAS  PubMed  Google Scholar 

  • European Medicines Agency (2018) EMA/450923/2016 – Vidaza, Annex I, summary of product characteristics. https://www.ema.europa.eu/en/medicines/human/EPAR/vidaza

  • Hollenbach PW, Nguyen AN, Brady H, Williams M, Ning Y, Richard N et al (2010) A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines. PLoS One 5(2):e9001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Illingworth RS, Bird AP (2009) CpG islands–‘a rough guide’. FEBS Lett 583(11):1713–1720

    Article  CAS  PubMed  Google Scholar 

  • Jjingo D, Conley AB, Yi SV, Lunyak VV, Jordan IK (2012) On the presence and role of human gene-body DNA methylation. Oncotarget 3(4):462–474

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones PA (1999) The DNA methylation paradox. Trends Genet 15(1):34–37

    Article  CAS  PubMed  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13(7):484–492

    Article  CAS  PubMed  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Wang YW, Zhang MQ, Gazdar AF (2013) DNA methylation data analysis and its application to cancer research. Epigenomics 5(3):301–316

    Article  CAS  PubMed  Google Scholar 

  • Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466(7303):253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlevede J, Droin N, Qin T, Meldi K, Yoshida K, Morabito M et al (2016) Mutation allele burden remains unchanged in chronic myelomonocytic leukaemia responding to hypomethylating agents. Nat Commun 24(7):10767

    Article  CAS  Google Scholar 

  • Pleyer L, Greil R (2015) Digging deep into “dirty” drugs-modulation of the methylation machinery. Drug Metab Rev 47(2):252–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinke J, Schafer V, Schmidt M, Ziermann J, Kohlmann A, Hochhaus A et al (2013) Genotyping of 25 leukemia-associated genes in a single work flow by next-generation sequencing technology with low amounts of input template DNA. Clin Chem 59(8):1238–1250

    Article  CAS  PubMed  Google Scholar 

  • Schäfer V, Ernst J, Rinke J, Winkelmann N, Beck JF, Hochhaus A, Gruhn B, Ernst T (2016) EZH2 mutations and promoter hypermethylation in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 142(7):1641–1650

    Article  CAS  PubMed  Google Scholar 

  • Stresemann C, Bokelmann I, Mahlknecht U, Lyko F (2008) Azacytidine causes complex DNA methylation responses in myeloid leukemia. Mol Cancer Ther 7(9):2998–3005

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hu H, Zhang Q, Yang Y, Li Y, Hu Y et al (2013) Dynamic transcriptomes of human myeloid leukemia cells. Genomics 102(4):250–256

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Wang M, Bonaldo Mde F, Smith C, Rajaram V, Goldman S et al (2009) High-throughput sequence-based epigenomic analysis of Alu repeats in human cerebellum. Nucleic Acids Res 37(13):4331–4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32(3):e38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeilinger S, Kuhnel B, Klopp N, Baurecht H, Kleinschmidt A, Gieger C et al (2013) Tobacco smoking leads to extensive genome-wide changes in DNA methylation. PLoS One 8(5):e63812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J et al (2018) Ensembl 2018. Nucleic Acids Res 46(D1):D754–D761

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Joyce BT, Liu L, Zhang Z, Kibbe WA, Zhang W et al (2017) Prediction of genome-wide DNA methylation in repetitive elements. Nucleic Acids Res 45(15):8697–8711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Interdisciplinary Center for Clinical Research (IZKF), Universitätsklinikum Jena, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Ernst.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 290 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawlitza, A.L., Speith, J., Rinke, J. et al. 5-Azacytidine modulates CpG methylation levels of EZH2 and NOTCH1 in myelodysplastic syndromes. J Cancer Res Clin Oncol 145, 2835–2843 (2019). https://doi.org/10.1007/s00432-019-03016-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-019-03016-9

Keywords

Navigation