Is tumor volume reduction during radiotherapy prognostic relevant in patients with stage III non-small cell lung cancer?

  • Khaled Elsayad
  • Laith Samhouri
  • Sergiu Scobioala
  • Uwe Haverkamp
  • Hans Theodor Eich
Original Article – Clinical Oncology
  • 64 Downloads

Abstract

Purpose/objective(s)

Lung cancer tumor volume reduction is common during radiation treatment (RT). The purpose of this study was to investigate tumor volume reduction ratio (VRR) and its correlation with outcomes in a cohort of patients with stage III non-small cell lung cancer (NSCLC) who underwent image-guided radiochemotherapy (RCTx).

Materials/methods

Fifty patients with NSCLC treated with fractionated RT at our institution between 2013 and 2017 were included. The relationship between gross tumor volume (GTV) changes during RT (week 1 vs. week 5) and outcomes were evaluated.

Results

The median radiation dose delivered was 59.4 Gy (median fraction dose, 1.8 Gy). The median GTV before treatment was 119 cm3, with a median GTV change of − 40%. Patients with more volume reduction had poorer tumor control. A VRR > 40% was associated with a poorer OS and PFS in patients with non-adenocarcinoma (non-ADC) histology. In multivariate analysis, VRR during RT, and chemotherapy (CTx) administration remained related to PFS and OS, while initial GTV remained a significant determinant for OS. In subgroup analyses, and CTx (p = 0.038) affected PFS among non-ADC patients, with initial GTV (p = 0.058) and VRR (p = 0.08) showing non-significant trends. Initial GTV (p = 0.023), VRR (p = 0.038), and CTx (p = 0.01) remained significant predictors for OS in the non-ADC group.

Conclusion

Worse tumor control and OS in non-ADC patients are observed with more marked RT-induced tumor shrinkage, supporting the development of response-adaptive treatment strategies, particularly in non-ADC NSCLC patients.

Keywords

Lung cancer GTV changes Intensity-modulated radiation therapy Adaptive planning Survival 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the University Hospital Münster and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, Wit M de, Cho BC, Bourhaba M, Quantin X, Tokito T, Mekhail T, Planchard D, Kim Y-C, Karapetis CS, Hiret S, Ostoros G, Kubota K, Gray JE, Paz-Ares L, Castro Carpeño J de, Wadsworth C, Melillo G, Jiang H, Huang Y, Dennis PA, Özgüroğlu M (2017) Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 377:1919–1929.  https://doi.org/10.1056/NEJMoa1709937 CrossRefPubMedGoogle Scholar
  2. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, Bogart J, Hu C, Forster K, Magliocco A, Kavadi V, Garces YI, Narayan S, Iyengar P, Robinson C, Wynn RB, Koprowski C, Meng J, Beitler J, Gaur R, Curran W Jr, Choy H (2015) Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol 16:187–199.  https://doi.org/10.1016/S1470-2045(14)71207-0 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bral S, Ridder M de, Duchateau M, Gevaert T, Engels B, Schallier D, Storme G (2011) Daily megavoltage computed tomography in lung cancer radiotherapy: correlation between volumetric changes and local outcome. Int J Radiat Oncol Biol Phys 80:1338–1342.  https://doi.org/10.1016/j.ijrobp.2010.04.002 CrossRefPubMedGoogle Scholar
  4. Brierley J, Gospodarowicz MK, Wittekind C (eds) (2017) TNM classification of malignant tumours, 8th edn. Wiley-Blackwell. ISBN: 978-1-119-26357-9Google Scholar
  5. Brink C, Bernchou U, Bertelsen A, Hansen O, Schytte T, Bentzen SM (2014) Locoregional control of non-small cell lung cancer in relation to automated early assessment of tumor regression on cone beam computed tomography. Int J Radiat Oncol Biol Phys 89:916–923.  https://doi.org/10.1016/j.ijrobp.2014.03.038 CrossRefPubMedGoogle Scholar
  6. Chan MKH, Werner R, Ayadi M, Blanck O (2015) Comparison of 3D and 4D Monte Carlo optimization in robotic tracking stereotactic body radiotherapy of lung cancer. Strahlenther Onkol 191:161–171.  https://doi.org/10.1007/s00066-014-0747-5 CrossRefPubMedGoogle Scholar
  7. Chi A, Nguyen NP, Welsh JS, Tse W, Monga M, Oduntan O, Almubarak M, Rogers J, Remick SC, Gius D (2014) Strategies of dose escalation in the treatment of locally advanced non-small cell lung cancer: image guidance and beyond. Front Oncol 4:156.  https://doi.org/10.3389/fonc.2014.00156 PubMedPubMedCentralGoogle Scholar
  8. Eberhardt WEE, Poettgen C, Gauler TC, Friedel G, Veit S, Heinrich V, Welter S, Budach W, Spengler W, Kimmich M, Fischer B, Schmidberger H, Ruysscher D de, Belka C, Cordes S, Hepp R, Luetke-Brintrup D, Lehmann N, Schuler M, Joeckel K-H, Stamatis G, Stuschke M (2015) Phase III study of surgery versus definitive concurrent chemoradiotherapy boost in patients with resectable stage IIIA(N2) and selected IIIB Non-small-cell lung cancer after induction chemotherapy and concurrent chemoradiotherapy (ESPATUE). J Clin Oncol 33:4194–4201.  https://doi.org/10.1200/JCO.2015.62.6812 CrossRefPubMedGoogle Scholar
  9. Elsayad K, Kriz J, Reinartz G, Scobioala S, Ernst I, Haverkamp U, Eich HT (2016) Cone-beam CT-guided radiotherapy in the management of lung cancer: diagnostic and therapeutic value. Strahlenther Onkol 192:83–91.  https://doi.org/10.1007/s00066-015-0927-y CrossRefPubMedGoogle Scholar
  10. Guckenberger M, Richter A, Wilbert J, Flentje M, Partridge M (2011a) Adaptive radiotherapy for locally advanced non–small-cell lung cancer does not underdose the microscopic disease and has the potential to increase tumor control. Int J Radiat Oncol Biol Phys 81:e275–e282.  https://doi.org/10.1016/j.ijrobp.2011.01.067 CrossRefPubMedGoogle Scholar
  11. Guckenberger M, Wilbert J, Richter A, Baier K, Flentje M (2011b) Potential of adaptive radiotherapy to escalate the radiation dose in combined radiochemotherapy for locally advanced non–small cell lung cancer. Int J Radiat Oncol Biol Phys 79:901–908.  https://doi.org/10.1016/j.ijrobp.2010.04.050 CrossRefPubMedGoogle Scholar
  12. Guckenberger M, Kavanagh A, Partridge M (2012) Combining advanced radiotherapy technologies to maximize safety and tumor control probability in stage III non-small cell lung cancer. Strahlenther Onkol 188:894–900.  https://doi.org/10.1007/s00066-012-0161-9 CrossRefPubMedGoogle Scholar
  13. Houston KA, Henley SJ, Li J, White MC, Richards TB (2014) Patterns in lung cancer incidence rates and trends by histologic type in the United States, 2004–2009. Lung Cancer 86:22–28.  https://doi.org/10.1016/j.lungcan.2014.08.001 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jabbour SK, Kim S, Haider SA, Xu X, Wu A, Surakanti S, Aisner J, Langenfeld J, Yue NJ, Haffty BG, Zou W (2015) Reduction in tumor volume by cone beam computed tomography predicts overall survival in non-small cell lung cancer treated with chemoradiation therapy. Int J Radiat Oncol Biol Phys 92:627–633.  https://doi.org/10.1016/j.ijrobp.2015.02.017 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jeremic B (2015) Standard treatment option in stage III non-small-cell lung cancer: case against trimodal therapy and consolidation drug therapy. Clin Lung Cancer 16:80–85.  https://doi.org/10.1016/j.cllc.2014.08.003 CrossRefPubMedGoogle Scholar
  16. Kanzaki H, Kataoka M, Nishikawa A, Uwatsu K, Nagasaki K, Nishijima N, Ochi T, Mochizuki T (2016) Impact of early tumor reduction on outcome differs by histological subtype in stage III non-small-cell lung cancer treated with definitive radiotherapy. Int J Clin Oncol 21:853–861.  https://doi.org/10.1007/s10147-016-0982-0 CrossRefPubMedGoogle Scholar
  17. Käsmann L, Niyazi M, Blanck O, Baues C, Baumann R, Dobiasch S, Eze C, Fleischmann D, Gauer T, Giordano FA, Goy Y, Hausmann J, Henkenberens C, Kaul D, Klook L, Krug D, Mäurer M, Panje CM, Rosenbrock J, Sautter L, Schmitt D, Süß C, Thieme AH, Trommer-Nestler M, Ziegler S, Ebert N, Medenwald D, Ostheimer C (2017) Prädiktiver und prognostischer Wert des tumorvolumens und seiner veränderungen während radikaler strahlentherapie beim nicht-kleinzelligen bronchialkarzinom im stadium III: ein systematischer review (predictive and prognostic value of tumor volume and its changes during radical radiotherapy of stage iii non-small cell lung cancer: a systematic review). Strahlenther Onkol.  https://doi.org/10.1007/s00066-017-1221-y Google Scholar
  18. Koo TR, Moon SH, Lim YJ, Kim JY, Kim Y, Kim TH, Cho KH, Han J-Y, Lee YJ, Yun T, Kim HT, Lee JS (2014) The effect of tumor volume and its change on survival in stage III non-small cell lung cancer treated with definitive concurrent chemoradiotherapy. Radiat Oncol 9:2692.  https://doi.org/10.1186/s13014-014-0283-6 CrossRefGoogle Scholar
  19. Kwint M, Conijn S, Schaake E, Knegjens J, Rossi M, Remeijer P, Sonke J-J, Belderbos J (2014) Intra thoracic anatomical changes in lung cancer patients during the course of radiotherapy. Radiother Oncol 113:392–397.  https://doi.org/10.1016/j.radonc.2014.10.009 CrossRefPubMedGoogle Scholar
  20. Li R, Han B, Meng B, Maxim PG, Xing L, Koong AC, Diehn M, Loo BW (2013) Clinical implementation of intrafraction cone beam computed tomography imaging during lung tumor stereotactic ablative radiation therapy. Int J Radiat Oncol Biol Phys 87:917–923.  https://doi.org/10.1016/j.ijrobp.2013.08.015 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Ostheimer C, Schweyer F, Reese T, Bache M, Vordermark D (2016) The relationship between tumor volume changes and serial plasma osteopontin detection during radical radiotherapy of non-small cell lung cancer. Oncol Lett 12:3449–3456.  https://doi.org/10.3892/ol.2016.5104 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Ostheimer C, Baues C, Baumann R, Dobiasch S, Eze C, Fleischmann D, Gauer T, Giordano FA, Goy Y, Hausmann J, Henkenberens C, Kaul DP, Kloock L, Krug D, Kaesmann L, Niyazi K-M, Maeurer M, Oertel M, Panje C, Rosenbrock J, Sautter L, Schmitt D, Suess C, Thieme AH, Trommer-Nestler M, Ziegler S, Ebert N, Medenwald D (2018) Prognostic relevance of tumor volume and its changes in the radical radiotherapy of advanced NSCLC—a multicenter retrospective evaluation of the working group “young DEGRO” of the German Society of Radiation Oncology (DEGRO). Oncol Res Treat 41:106Google Scholar
  23. Peeken JC, Nüsslin F, Combs SE (2017) Radio-oncomics: das potenzial von radiomics in der strahlenonkologie (“radio-oncomics”: the potential of radiomics in radiation oncology). Strahlenther Onkol 193:767–779.  https://doi.org/10.1007/s00066-017-1175-0 CrossRefPubMedGoogle Scholar
  24. Rodrigues G, Choy H, Bradley J, Rosenzweig KE, Bogart J, Curran WJ, Gore E, Langer C, Louie AV, Lutz S, Machtay M, Puri V, Werner-Wasik M, Videtic GMM (2015) Definitive radiation therapy in locally advanced non-small cell lung cancer: executive summary of an American Society for Radiation Oncology (ASTRO) evidence-based clinical practice guideline. Pract Radiat Oncol 5:141–148.  https://doi.org/10.1016/j.prro.2015.02.012 CrossRefPubMedGoogle Scholar
  25. Roengvoraphoj O, Wijaya C, Eze C, Li M, Dantes M, Taugner J, Tufman A, Huber RM, Belka C, Manapov F (2017) Analyse des metabolischen primärtumorvolumens im verlauf der radiochemotherapie bei lokal fortgeschrittenem nichtkleinzelligem lungenkarzinom (analysis of primary tumor metabolic volume during chemoradiotherapy in locally advanced non-small cell lung cancer). Strahlenther Onkol.  https://doi.org/10.1007/s00066-017-1229-3 Google Scholar
  26. Semrau S, Zettl H, Hildebrandt G, Klautke G, Fietkau R (2014) Older patients with inoperable non-small cell lung cancer: long-term survival after concurrent chemoradiotherapy. Strahlenther Onkol 190:1125–1132.  https://doi.org/10.1007/s00066-014-0710-5 CrossRefPubMedGoogle Scholar
  27. Siker ML, Tome WA, Mehta MP (2006) Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: how reliable, consistent, and meaningful is the effect? Int J Radiat Oncol Biol Phys 66:135–141.  https://doi.org/10.1016/j.ijrobp.2006.03.064 CrossRefPubMedGoogle Scholar
  28. Tvilum M, Khalil AA, Møller DS, Hoffmann L, Knap MM (2015) Clinical outcome of image-guided adaptive radiotherapy in the treatment of lung cancer patients. Acta Oncol 54:1430–1437.  https://doi.org/10.3109/0284186X.2015.1062544 CrossRefPubMedGoogle Scholar
  29. Wanet M, Delor A, Hanin F-X, Ghaye B, van Maanen A, Remouchamps V, Clermont C, Goossens S, Lee JA, Janssens G, Bol A, Geets X (2017) Studie zur individualisierten bestrahlungsdosiseskalation bei nichtkleinzelligem lungenkarzinom basierend auf der FDG-PET-bildgebung (an individualized radiation dose escalation trial in non-small cell lung cancer based on FDG-PET imaging). Strahlenther Onkol 193:812–822.  https://doi.org/10.1007/s00066-017-1168-z CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Radiation Oncology DepartmentUniversity Hospital MuensterMuensterGermany

Personalised recommendations