Advertisement

Role of natural killer cells in lung cancer

  • Ozge Nur Aktaş
  • Ayşe Bilge Öztürk
  • Baran Erman
  • Suat Erus
  • Serhan Tanju
  • Şükrü Dilege
Review – Cancer Research

Abstract

Purpose

One of the key immune cells involved in the pathogenesis of lung cancer is natural killer (NK) cells and these cells are novel targets for therapeutic applications in lung cancer. The purpose of this review is to summarize the current literature on lung cancer pathogenesis with a focus on the interaction between NK cells and smoking, how these factors are related to the pathogenesis of lung cancer and how NK cell-based immunotherapy effect lung cancer survival.

Methods

The relevant literature from PubMed and Medline databases is reviewed in this article.

Results

The cytolytic potential of NK cells are reduced in lung cancer and increasing evidence suggests that improving NK cell functioning may induce tumor regression. Recent clinical trials on NK cell-based novel therapies such as cytokines including interleukin (IL)-15, IL-12 and IL-2, NK-92 cell lines and allogenic NK cell immunotherapy showed promising results with less adverse effects on the lung cancer survival.

Conclusions

The NK cell targeting strategy has not yet been approved for lung cancer treatment. More clinical studies focusing on the role of NK cells in lung cancer pathogenesis are warranted to develop novel NK cell-based therapeutic approaches for the treatment of lung cancer.

Keywords

Immunotherapy Lung cancer Natural killer cells Non-small cell lung cancer Small cell lung cancer 

Notes

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

References

  1. Al Omar SY, Marshall E, Middleton D, Christmas SE (2011) Increased killer immunoglobulin-like receptor expression and functional defects in natural killer cells in lung cancer. Immunology 133(1):94–104CrossRefPubMedPubMedCentralGoogle Scholar
  2. Andreoli C, Bassi A, Gregg EO, Nunziata A, Puntoni R, Corsini E (2015) Effects of cigarette smoking on circulating leukocytes and plasma cytokines in monozygotic twins. Clin Chem Lab Med 53(1):57–64CrossRefPubMedGoogle Scholar
  3. Anton-Culver H, Chang J, Bray F, Znaor A, Stevens L, Eser S et al (2016) Cancer burden in four countries of the Middle East Cancer Consortium (Cyprus; Jordan; Israel; Izmir Turkey) with comparison to the United States surveillance; epidemiology and end results program. Cancer Epidemiol 44:195–202CrossRefPubMedGoogle Scholar
  4. Bauer S et al (1999) Activation of natural killer cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285:727–730CrossRefPubMedGoogle Scholar
  5. Boutet P et al (2009) Cutting edge: the metalloproteinase ADAM17/TNF-α-converting enzyme regulates proteolytic shedding of the MHC class I‑related chain B protein. J Immunol 182:49–53CrossRefPubMedGoogle Scholar
  6. Carrega P, Morandi B, Costa R, Frumento G, Forte G, Altavilla G, Ratto GB, Mingari MC, Moretta L, Ferlazzo G (2008) Natural killer cells infiltrating human nonsmall-cell lung cancer are enriched in CD56 bright CD16(−) cells and display an impaired capability to kill tumor cells. Cancer 112(4):863–875CrossRefPubMedGoogle Scholar
  7. Castriconi R, Cantoni C, Della Chiesa M, Vitale M, Marcenaro E, Conte R, Biassoni R, Bottino C, Moretta L, Moretta A (2003) Transforming growth factor beta 1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc Natl Acad Sci USA 100(7):4120–4125CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cooper MA, Fehniger TA, Caligiuri MA (2001) The biology of human natural killer-cell subsets. Trends Immunol 22:633–640CrossRefPubMedGoogle Scholar
  9. Cui F, Ji J, Lv H, Qu D, Yu C, Yang Y, Xu Y (2013) Immune responsiveness in a mouse model of combined adoptive immunotherapy with NK and dendritic cells. J Cancer Res Ther 9(Suppl):S162–S168PubMedGoogle Scholar
  10. De Vita F, Orditura M, Galizia G, Romano C, Roscigno A, Lieto E, Catalano G (2000) Serum interleukin-10 levels as a prognostic factor in advanced non-small cell lung cancer patients. Chest 117:365–373CrossRefPubMedGoogle Scholar
  11. Deniz G, van de Veen W, Akdis M (2013) Natural killer cells in patients with allergic diseases. J Allergy Clin Immunol 132(3):527–535CrossRefPubMedGoogle Scholar
  12. Ding X, Cao H, Chen X, Jin H, Liu Z, Wang G, Cai L, Li D, Niu C, Tian H, Yang L, Zhao Y, Li W, Cui J (2015) Cellular immunotherapy as maintenance therapy prolongs the survival of the patients with small cell lung cancer. J Transl Med 13:158CrossRefPubMedPubMedCentralGoogle Scholar
  13. Esendagli G, Bruderek K, Goldmann T, Busche A, Branscheid D, Vollmer E, Brandau S (2008) Malignant and non-malignant lung tissue areas are differentially populated by natural killer cells and regulatory T cells in non-small cell lung cancer. Lung Cancer 59(1):32–40CrossRefPubMedGoogle Scholar
  14. Fend L, Rusakiewicz S, Adam J, Bastien B, Caignard A, Messaoudene M et al (2016) Prognostic impact of the expression of NCR1 and NCR3 NK cell receptors and PD-L1 on advanced non-small cell lung cancer. Oncoimmunology 6(1):e1163456CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A, Münz C (2004) The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 172(3):1455–1462CrossRefPubMedGoogle Scholar
  16. Hatanaka H, Abe Y, Kamiya T, Morino F, Nagata J, Tokunaga T, Oshika Y, Suemizu H, Kijima H, Tsuchida T, Yamazaki H, Inoue H et al (2000) Clinical implications of interleukin-10 induced by non-small-cell lung cancer. Ann Oncol 11:815–819CrossRefPubMedGoogle Scholar
  17. Hiraki A, Kiura K, Yamane H, Nogami N, Tabata M, Takigawa N, Ueoka H, Tanimoto M, Harada M (2002) Interleukin-12 augments cytolytic activity of peripheral blood mononuclear cells against autologous lung cancer cells in combination with IL-2. Lung Cancer 35(3):329–333CrossRefPubMedGoogle Scholar
  18. Hodge G, Barnawi J, Jurisevic C, Moffat D, Holmes M, Reynolds PN, Jersmann H, Hodge S (2014) Lung cancer is associated with decreased expression of perforin, granzyme B and interferon (IFN)-γ by infiltrating lung tissue T cells, natural killer (NK) T-like and NK cells. Clin Exp Immunol 178(1):79–85CrossRefPubMedPubMedCentralGoogle Scholar
  19. Huang AL, Liu SG, Qi WJ, Zhao YF, Li YM, Lei B, Sheng WJ, Shen H (2014) TGF-β1 protein expression in non-small cell lung cancers is correlated with prognosis. Asian Pac J Cancer Prev 15(19):8143–8147CrossRefPubMedGoogle Scholar
  20. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2004) Tobacco smoke and involuntary smoking. IARC Monogr Eval Carcinog Risks Hum 83:1–1438PubMedCentralGoogle Scholar
  21. Jin S, Deng Y, Hao JW, Li Y, Liu B, Yu Y, Shi FD, Zhou QH (2014) NK cell phenotypic modulation in lung cancer environment. PLoS One 9(10):e109976CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jonges LE, Albertsson P, van Vlierberghe RL, Ensink NG, Johansson BR, van de Velde CJ et al (2001) The phenotypic heterogeneity of human natural killer cells: presence of at least 48 different subsets in the peripheral blood. Scand J Immunol 53:103–110CrossRefPubMedGoogle Scholar
  23. Kim S, Iizuka K, Aguila HL et al (2000) In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc Natl Acad Sci USA 97(6):2731–2736CrossRefPubMedPubMedCentralGoogle Scholar
  24. Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G et al (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res 10:3699–3707CrossRefPubMedGoogle Scholar
  25. Li Yang L, Wang, Zhang Y (2016) Immunotherapy for lung cancer: advances and prospects. Am J Clin Exp Immunol 5(1):1–20PubMedGoogle Scholar
  26. Lin M, Liang SZ, Wang XH et al (2017) Clinical efficacy of percutaneous cryoablation combined with allogenic NK cell immunotherapy for advanced non-small cell lung cancer. Immunol Res 65(4):880–887CrossRefPubMedGoogle Scholar
  27. Lowry LE, Zehring WA (2017) Potentiation of natural killer cells for cancer immunotherapy: a review of literature. Front Immunol 8:1061CrossRefPubMedPubMedCentralGoogle Scholar
  28. Loza MJ, Perussia B (2004) The IL‑12 signature: NK cell terminal CD56+ high stage and effector functions. J Immunol 172:88–96CrossRefPubMedGoogle Scholar
  29. Lu LM, Zavitz CC, Chen B, Kianpour S, Wan Y, Stämpfli MR (2007) Cigarette smoke impairs NK cell-dependent tumor immune surveillance. J Immunol 178(2):936–943CrossRefPubMedGoogle Scholar
  30. Luna JI, Grossenbacher SK, Murphy WJ, Canter RJ (2017) Targeting cancer stem cells with natural killer cell immunotherapy. Expert Opin Biol Ther 17(3):313–324CrossRefPubMedGoogle Scholar
  31. Luppi P, Lain KY, Jeyabalan A, DeLoia JA (2007) The effects of cigarette smoking on circulating maternal leukocytes during pregnancy. Clin Immunol 122(2):214–219CrossRefPubMedGoogle Scholar
  32. Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, Wang L, Shifrin N, Raulet DH (2014) Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol 122:91–128CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mian MF, Lauzon NM, Stampfli MR, Mossman KL, Ashkar AA (2008) Impairment of human NK cell cytotoxic activity and cytokine release by cigarette smoke. J Leukoc Biol 83:74–784CrossRefGoogle Scholar
  34. Mian MF, Pek EA, Mossman KL, St€ampfli MR, Ashkar AA (2009a) Exposure to cigarette smoke suppresses IL-15 generation and its regulatory NK cell functions in poly I: C-augmented human PBMCs. Mol Immunol 46:3108e16Google Scholar
  35. Mian MF, Pek EA, Mossman KL, Stampfli MR, Ashkar AA (2009b) Exposure to cigarette smoke suppresses IL-15 generation and its regulatory NK cell functions in poly I:C-augmented human PBMCs. Mol Immunol 46:3108–3116CrossRefPubMedGoogle Scholar
  36. Mian MF, Steampfli MR, Mossman KL, Ashkar AA (2009c) Cigarette smoke attenuation of poly I: C-induced innate antiviral responses in human PBMC is mainly due to inhibition of IFNbeta production. Mol Immunol 46:825e9Google Scholar
  37. Miller JS, Morishima C, McNeel DG, Patel MR, Kohrt HE, Thompson JA et al (2017) A first-in-human phase 1 study of subcutaneous outpatient recombinant human IL-15 (rhIL-15) in adults with advanced solid tumors. Clin Cancer Res.  https://doi.org/10.1158/1078-0432.CCR-17-2451 Google Scholar
  38. Morgensztern D, Campo MJ, Dahlberg SE, Doebele RC, Garon E, Gerber DE et al (2015) Molecularly targeted therapies in non small cell lung cancer annual update 2014. J Thorac Oncol 10(101):S1–S63CrossRefPubMedPubMedCentralGoogle Scholar
  39. Moszczyński P, Zabiński Z, Moszczyński P Jr, Rutowski J, Słowiński S, Tabarowski Z (2001) Immunological findings in cigarette smokers. Toxicol Lett 118(3):121–127CrossRefPubMedGoogle Scholar
  40. Motz GT, Eppert BL, Wortham BW, Amos-Kroohs RM, Flury JL, Wesselkamper SC, Borchers MT (2010) Chronic cigarette smoke exposure primes NK cell activation in a mouse model of chronic obstructive pulmonary disease. J Immunol 184:4460–4469CrossRefPubMedGoogle Scholar
  41. National Cancer Institute (2014) Surveillance, epidemiology and end results programme. Cancer stat facts: lung and bronchus cancer. https://seer.cancer.gov/statfacts/html/lungb.html. Accessed Nov 2017
  42. Ndhlovu LC, Lopez-Vergès S, Barbour JD, Jones RB, Jha AR, Long BR, Schoeffler EC, Fujita T, Nixon DF, Lanier LL (2012) Tim-3 marks human natural killer cell maturation and suppresses cell-mediated cytotoxicity. Blood 119(16):3734–3743CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pende D, Cantoni C, Rivera P, Vitale M, Castriconi R, Marcenaro S, Nanni M, Biassoni R, Bottino C, Moretta A, Moretta L (2001) Role of NKG2D in tumor cell lysis mediated by human NK cells: cooperation with natural cytotoxicity receptors and capability of recognizing tumors of nonepithelial origin. Eur J Immunol 31(4):1076–1086CrossRefPubMedGoogle Scholar
  44. Peter ME, Krammer PH (2003) The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 10(1):26–35CrossRefPubMedGoogle Scholar
  45. Platonova S, Cherfils-Vicini J, Damotte D, Crozet L, Vieillard V, Validire P (2011) Profound coordinated alterations of intratumoral NK cell phenotype and function in lung carcinoma. Cancer Res 71(16):5412–5422CrossRefPubMedGoogle Scholar
  46. Poli A, Michel T, Theresine M, Andres E, Hentges F, Zimmer J (2009) CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126:458–465CrossRefPubMedPubMedCentralGoogle Scholar
  47. Romee R et al (2013) NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease‑17 (ADAM17). Blood 121:3599–3608CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schneider T, Kimpfler S, Warth A, Schnabel PA, Dienemann H, Schadendorf D, Hoffmann H, Umansky V (2011) Foxp3(+) regulatory T cells and natural killer cells distinctly infiltrate primary tumors and draining lymph nodes in pulmonary adenocarcinoma. J Thorac Oncol 6(3):432–438CrossRefPubMedGoogle Scholar
  49. Sopori M (2002) Effects of cigarette smoke on the immune system. Nat Rev Immunol 2(5):372–377CrossRefPubMedGoogle Scholar
  50. Sopori ML, Gairola CC, DeLucia AJ, Bryant LR, Cherian S (1985) Immune responsiveness of monkeys exposed chronically to cigarette smoke. Clin Immunol Immunopathol 36(3):338CrossRefPubMedGoogle Scholar
  51. Specht HM, Pelzel J, Hautmann H, Huber RM, Schossow B, Molls M, Multhoff G (2014) P67. Targeted natural killer (NK) cell based adoptive immunotherapy for the treatment of patients with non-small cell lung cancer (NSCLC) after radiochemotherapy (RCT)—clinical application of NK cells activated by heat shock protein 70 (Hsp70). J Immunother Cancer 2(Suppl 2):P41CrossRefPubMedCentralGoogle Scholar
  52. Tonn T, Schwabe D, Klingemann HG et al (2013) Treatment of patients with advanced cancer with the natural killer cell line NK-92. Cytotherapy 15(12):1563–1570CrossRefPubMedGoogle Scholar
  53. Villegas FR, Coca S, Villarrubia VG, Jime´nez R, Chillo´n MJ et al (2002) Prognostic significance of tumor infiltrating natural killer cells subset CD57 inpatients with squamous cell lung cancer. Lung Cancer 35:23–28CrossRefPubMedGoogle Scholar
  54. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331:44CrossRefPubMedPubMedCentralGoogle Scholar
  55. World Health Organization (2012) International Agency for Research on Cancer. GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012 http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. Accessed Nov 2017
  56. Xu L, Huang Y, Tan L, Yu W, Chen D, Lu C, He J, Wu G, Liu X, Zhang Y (2015) Increased Tim-3 expression in peripheral NK cells predicts a poorer prognosis and Tim-3 blockade improves NK cell-mediated cytotoxicity in human lung adenocarcinoma. Int Immunopharmacol 29(2):635–641CrossRefPubMedGoogle Scholar
  57. Zhang G, Zhao H, Wu J, Li J, Xiang Y, Wang G, Wu L, Jiao S (2014) Adoptive immunotherapy for non-small cell lung cancer by NK and cytotoxic T lymphocytes mixed effector cells: retrospective clinical observation. Int Immunopharmacol 21(2):396–405CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Feinberg School of Medicine, Center for Community HealthNorthwestern UniversityChicagoUSA
  2. 2.Department of Allergy and ImmunologyKoç University HospitalIstanbulTurkey
  3. 3.Koç University, School of MedicineTranslational Medicine Research CenterIstanbulTurkey
  4. 4.Department of Thoracic SurgeryKoç University HospitalIstanbulTurkey

Personalised recommendations