Skip to main content

Advertisement

Log in

Identification of proteins differentially expressed in adriamycin-resistant (pumc-91/ADM) and parental (pumc-91) human bladder cancer cell lines by proteome analysis

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Resistance to chemotherapy drugs remains a difficult problem in bladder cancer treatment. Protein expression is an important factor underlying multidrug resistance (MDR) in bladder cancer. The aim of the study was to explore differentially expressed proteins responsible for MDR between an adriamycin-resistant human bladder cancer cell line (pumc-91/ADM) and its parental cell line (pumc-91).

Methods

Two-dimensional gel electrophoresis (2-DE) combining image analysis was used to screen the differentially expressed protein spots between the pumc-91/ADM and pumc-91 cell lines. Then, the protein spots were identified using MALDI-TOF/TOF mass spectrometry. Among the identified proteins, annexin A2 (ANXA2) and nucleophosmin (NPM1) were then further verified using RT-PCR and Western blot analysis.

Results

A total of 30 proteins, including 19 up-regulated and 11 down-regulated proteins, were successfully identified in pumc-91/ADM. According to their different functions, these 30 proteins were classified into 12 categories. Annexin A2 (ANXA2) and nucleophosmin (NPM1) were up-regulated in pumc-91/ADM compared with pumc-91.

Conclusion

The proteins identified may have an important clinical significance in MDR, and ANXA2 and NPM1 may take part in mechanism of MDR in bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baguley BC (2010) Multi-drug resistance in cancer. Methods Mol Biol 596:1–9

    Article  PubMed  CAS  Google Scholar 

  • Borer RA, Lehner CF, Eppenberger HM et al (1989) Major nucleolar proteins shuttle between nucleus and cytoplasm. Cell 56:379–390

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cole SP, Pinkoski MJ, Bhardwaj G et al (1992) Elevated expression of annexin II (lipocortin II, p36) in a multidrug resistant small cell lung cancer cell line. Br J Cancer 65(4):498–502

    Article  PubMed  CAS  Google Scholar 

  • Colombo E, Marine JC, Danovi D et al (2002) Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 4:529–533

    Article  PubMed  CAS  Google Scholar 

  • Dhar SK, Lynn BC, Daosukho C et al (2004) Identification of nucleophosmin as an NF-kappaB co-activator for the induction of the human SOD2 gene. J Biol Chem 279:28209–28219

    Article  PubMed  CAS  Google Scholar 

  • Emoto K, Sawada H, Yamada Y et al (2001a) Annexin II overexpression is correlated with poor prognosis in human gastric carcinoma. Anticancer Res 21:1339–1345

    PubMed  CAS  Google Scholar 

  • Emoto K, Yamada Y, Sawada H et al (2001b) Annexin II overexpression correlates with stromal tenascin-C overexpression: a prognostic marker in colorectal carcinoma. Cancer 92:1419–1426

    Article  PubMed  CAS  Google Scholar 

  • Falini B, Mecucci C, Tiacci E et al (2005) Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med 352:254–266

    Article  PubMed  CAS  Google Scholar 

  • Flood EC, Hajjar KA (2011) The annexin A2 system and vascular homeostasis. Vasc Pharmacol 54:59–67

    Article  CAS  Google Scholar 

  • Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    PubMed  CAS  Google Scholar 

  • Gingrich JR (2011) Chemohyperthermia for bladder cancer—clinically effective? Nat Rev Urol 8:414–416

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa S, Abe T, Naito S et al (1995) Expression of multidrug resistance-associated protein (MRP), MDR1 and DNA topoisomerase II in human multidrug-resistant bladder cancer cell lines. Br J Cancer 71:907–913

    Article  PubMed  CAS  Google Scholar 

  • Hayes MJ, Moss SE (2004) Annexins and disease. Biochem Biophys Res Commun 322:1166–1170

    Article  PubMed  CAS  Google Scholar 

  • Herrera JE, Savkur R, Olson MO (1995) The ribonuclease activity of nucleolar protein B23. Nucleic Acids Res 23:3974–3979

    Article  PubMed  CAS  Google Scholar 

  • Hong L, Piao Y, Han Y et al (2005) Zinc ribbon domain containing 1 (ZNRD1) mediates multidrug resistance of leukemia cells through regulation of P-glycoprotein and Bcl-2. Mol Cancer Ther 4:1936–1942

    Article  PubMed  CAS  Google Scholar 

  • Hsu CY, Yung BY (2000) Over-expression of nucleophosmin/B23 decreases the susceptibility of human leukemia HL-60 cells to retinoic acid-induced differentiation and apoptosis. Int J Cancer 88:392–400

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Lin M, Liu T et al (2011) DIGE-based proteomic analysis identifies nucleophosmin/B23 and nucleolin C23 as over-expressed proteins in relapsed/refractory acute leukemia. Leukemia Res 35:1087–1109

    Article  CAS  Google Scholar 

  • Ichimi T, Enokida H, Okuno Y et al (2009) Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 125:345–352

    Article  PubMed  CAS  Google Scholar 

  • Kikuta K, Tochigi N, Shimoda T et al (2009) Nucleophosmin as a candidate prognostic biomarker of Ewing’s sarcoma revealed by proteomics. Clin Cancer Res 15:2885–2894

    Article  PubMed  CAS  Google Scholar 

  • Korgaonkar C, Hagen J, Tompkins V et al (2005) Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 25:1258–1271

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, McDonnell S, Clynes M (2002) Examining the relationship between cancer invasion/metastasis and drug resistance. Curr Cancer Drug Targets 2(3):257–277

    Article  PubMed  CAS  Google Scholar 

  • Lim MJ, Wang XW (2006) Nucleophosmin and human cancer. Cancer Detect Prev 30:481–490

    Article  PubMed  CAS  Google Scholar 

  • Lin CY, Liang YC, Yung Benjamin YM (2006) Nucleophosmin/B23 regulates transcriptional activation of E2F1 via modulating the promoter binding of NF-κB, E2F1 and pRB. Cell Signal 18:2041–2048

    Article  PubMed  CAS  Google Scholar 

  • Liu JW, Shen JJ, Tanzillo-Swarts A et al (2003) Annexin II expression is reduced or lost in prostate cancer cells and its re-expression inhibits prostate cancer cell migration. Oncogene 22:1475–1485

    Article  PubMed  CAS  Google Scholar 

  • Liu X, Liu ZX, Jang SW et al (2007) Sumoylation of nucleophosmin/B23 regulates its subcellular localization, mediating cell proliferation and survival. PNAS 104(23):9679–9684

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M, Emoto A, Nasu N et al (1997) Clinical significance of multi-drug resistance associated protein and P-glycoprotein in patients with bladder cancer. J Urol 157:1260–1265

    Article  PubMed  CAS  Google Scholar 

  • Nozawa Y, Van Belzen N, Vander Made AC et al (1996) Expression of nucleophosmin/B23 in normal and neoplastic colorectal mucosa. J Pathol 178:48–52

    Article  PubMed  CAS  Google Scholar 

  • Pastorelli R, Carpi D, Campagna R et al (2007) Proteome characterization of a human urothelial cell line resistant to the bladder carcinogen 4-aminobiphenyl. Proteome Sci 5:6–14

    Article  PubMed  Google Scholar 

  • Pianta A, Puppin C, Deganuto M et al (2010) Nucleophosmin is overexpressed in thyroid tumors. Biochem Biophys Res Commun 397:499–504

    Article  PubMed  CAS  Google Scholar 

  • Schulz DM, llner CB, Thomas G et al (2009) Identification of differentially expressed proteins in triple-negative breast carcinomas using DIGE and mass spectrometry. J Proteome Res 8:3430–3438

    Article  PubMed  CAS  Google Scholar 

  • Sharma MR, Koltowski L, Ownbey RT et al (2006) Angiogenesis-associated protein annexin II in breast cancer: selective expression in invasive breast cancer and contribution to tumor invasion and progression. Exp Mol Pathol 81:146–156

    Article  PubMed  CAS  Google Scholar 

  • Subong EN, Shue MJ, Epstein JI et al (1999) Monoclonal antibody to prostate cancer nuclear matrix protein (PRO:4–216) recognizes nucleophosmin/B23. Prostate 39:298–304

    Article  PubMed  CAS  Google Scholar 

  • Szebeni A, Olson MO (1999) Nucleolar protein B23 has molecular chaperone activities. Protein Sci 8:905–912

    Article  PubMed  CAS  Google Scholar 

  • Tada Y, Wada M, Kuroiwa K et al (2000) MDR1 overexpression and altered degree of methylation at the promoter region in bladder cancer during chemotherapeutic treatment. Clin Cancer Res 6:4618–4627

    PubMed  CAS  Google Scholar 

  • Tanaka M, Sasaki H, Kino I et al (1992) Genes preferentially expressed in embryo stomach are predominantly expressed in gastric cancer. Cancer Res 52:3372–3377

    PubMed  CAS  Google Scholar 

  • Tokuyama Y, Horn HF, Kawamura K et al (2001) Specific phosphorylation of nucleophosmin on Thr(199) by cyclin dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 276:21529–21537

    Article  PubMed  CAS  Google Scholar 

  • Tsui KH, Cheng AJ, Chang PL et al (2004) Association of nucleophosmin/b23 mRNA expression with clinical outcome in patients with bladder carcinoma. Urology 64:839–844

    Article  PubMed  Google Scholar 

  • Tusi KH, Juang HH, Lee TH et al (2008) Association of nucleophosmin/B23 with bladder cancer recurrence based on immunohistochemical assessment in clinical samples. Acta Pharmacol Sin 29(3):364–370

    Article  Google Scholar 

  • Verhaak RG, Goudswaard CS, van Putten W et al (2005) Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood 106:3747–3754

    Article  PubMed  CAS  Google Scholar 

  • Vishwanatha JK, Chiang Y, Kumble KD et al (1993) Enhanced expression of annexin II in human pancreatic carcinoma cells and primary pancreatic cancers. Carcinogenesis 14:2575–2579

    Article  PubMed  CAS  Google Scholar 

  • Wu MH, Chang JH, Yung BY (2002a) Resistance to UV-induced cell-killing in nucleophosmin/B23 over-expressed NIH 3T3 fibroblasts: enhancement of DNA repair and up-regulation of PCNA in association with nucleophosmin/B23 over-expression. Carcinogenesis 23:93–100

    Article  PubMed  Google Scholar 

  • Wu MH, Chang JH, Chou CC, Yung BY (2002b) Involvement of nucleophosmin/B23 in the response of HeLa cells to UV irradiation. Int J Cancer 97:297–305

    Article  PubMed  CAS  Google Scholar 

  • Xu RH, Pelicano H, Zhou Y et al (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621

    Article  PubMed  CAS  Google Scholar 

  • Yang YX, Hu HD, Zhang DZ et al (2007) Identification of proteins responsible for the development of adriamycin resistance in human gastric cancer cells using comparative proteomics analysis. J Biochem Mol Biol 40:853–860

    Article  PubMed  CAS  Google Scholar 

  • Yao HX, Zhang ZQ, Xiao ZQ et al (2009) Identification of metastasis associated proteins in human lung squamous. carcinoma using two-dimensional difference gel electrophoresis and laser capture microdissection. Lung Cancer 65:41–48

    Article  PubMed  Google Scholar 

  • Ye KQ (2005) Nucleophosmin/B23, a multifunctional protein that can regulate apoptosis. Cancer Biol Ther 4:918–923

    PubMed  CAS  Google Scholar 

  • Yung BY, Busch H, Chan PK (1985) Translocation of nucleolar phosphoprotein B23 (37 kDa/pI 5.1) induced by selective inhibitors of ribosome synthesis. Biochim Biophys Acta 826:167–173

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Jin S, Zhang M (2009a) Establishing human multi-drug resistant bladder cancer cell lines Pumc-91/ADM and evaluating its biological characteristics. J Med Res 38(1):70–72

    Google Scholar 

  • Zhang Fei, Zhang Lin, Zhang Bin et al (2009b) Anxa2 plays a critical role in enhanced invasiveness of the multidrug resistant human breast cancer cells. J Proteome Res 8:3430–3438

    Article  Google Scholar 

Download references

Acknowledgments

Research supported by Beijing Municipal Natural Science Foundation.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Q., Lei, T., Zhang, M. et al. Identification of proteins differentially expressed in adriamycin-resistant (pumc-91/ADM) and parental (pumc-91) human bladder cancer cell lines by proteome analysis. J Cancer Res Clin Oncol 139, 509–519 (2013). https://doi.org/10.1007/s00432-012-1350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-012-1350-8

Keywords

Navigation