Skip to main content
Log in

Nutlin-3 cooperates with doxorubicin to induce apoptosis of human hepatocellular carcinoma cells through p53 or p73 signaling pathways

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

A Correction to this article was published on 02 February 2021

This article has been updated

Abstract

Purpose

Despite recent advances in chemotherapeutic agents for Hepatocellular carcinoma (HCC) treatment, the results of chemotherapy remain unsatisfactory. Doxorubicin (DOX) still represents the cornerstone in HCC chemotherapy, but resistance and toxicity to normal cells are major obstacles to successful chemotherapy. Therefore, new active agents in HCC chemotherapy and agents that increase the chemosensitivity of HCC cells to DOX are still urgently required. Nutlin-3 is a small-molecule inhibitor that acts to inhibit murine double minute-2 (MDM2) binding to p53 or p73, and subsequently activates p53- or p73-dependent apoptosis signaling pathway. This study was designed to investigate whether Nutlin-3 alters cell toxicity to HCC cells following DNA damage and to assess the suitability of DOX/Nutlin-3 as a chemotherapeutic combination in HCC chemotherapy.

Methods

Four human HCC cells were analyzed using cell proliferation assay, apoptosis assay, western blotting, co-immunoprecipitation and siRNA experiments. Anti-tumoral effects of Nutlin-3/DOX targeting the p53/MDM2 and p73/MDM2 pathways were evaluated in HCC cell lines.

Results

Nutlin-3 enhances the growth inhibition by DOX and potentates the apoptotic effect in all HCC cell lines with different p53 types. Nutlin-3 acts through the disruption of p53–MDM2 binding in HepG2, and the disruption of p73–MDM2 in Huh-7 and Hep3B cell lines with subsequent activation of the apoptotic pathway, which leads to the increase in chemosensitivity to DOX in HCC cells.

Conclusions

Taken together, our findings suggest that Nutlin-3 will be active in the treatment of HCC and offers new prospects for overcoming DOX resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

Abbreviations

HCC:

Hepatocellular carcinoma

DOX:

Doxorubicin

DMEM:

Dulbecco’s modified Eagle’s medium

MDM2:

Murine double minute-2

PBS:

Phospho-buffered saline

siRNA:

Small interfering RNA

References

  • Artandi SE, Attardi LD (2005) Pathways connecting telomeres and p53 in senescence, apoptosis, and cancer. Biochem Biophys Res Commun 331(3):881–890

    Article  CAS  PubMed  Google Scholar 

  • Bálint E, Bates S, Vousden KH (1999) Mdm2 binds p73 alpha without targeting degradation. Oncogene 18(27):3923–3929

    Article  PubMed  Google Scholar 

  • Carr BI (2004) Hepatocellular carcinoma: current management and future trends. Gastroenterology 127:S218–S224

    Article  PubMed  Google Scholar 

  • Chen J, Wu X, Lin J, Levine AJ (1996) mdm-2 inhibits the G1 arrest and apoptosis functions of the p53 tumor suppressor protein. Mol Cell Biol 16(5):2445–2452

    CAS  PubMed  Google Scholar 

  • Chen X, Zhang M, Liu LX (2009) The overexpression of multidrug resistance-associated proteins and gankyrin contribute to arsenic trioxide resistance in liver and gastric cancer cells. Oncol Rep 22(1):73–80

    Article  CAS  PubMed  Google Scholar 

  • Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22:27–55

    Article  CAS  PubMed  Google Scholar 

  • Dobbelstein M, Wienzek S, König C, Roth J (1999) Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene 18:2101–2106

    Article  CAS  PubMed  Google Scholar 

  • Elison JR, Cobrinik D, Claros N, Abramson DH, Lee TC (2006) Small molecule inhibition of HDM2 leads to p53-mediated cell death in retinoblastoma cells. Arch Ophthalmol 124(9):1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Ferreira CG, Tolis C, Giaccone G (1999) p53 and chemosensitivity. Ann Oncol 10(9):1011–1021

    Article  CAS  PubMed  Google Scholar 

  • Guan YS, La Z, Yang L, He Q, Li P (2007) p53 gene in treatment of hepatic carcinoma: status quo. World J Gastroenterol 13(7):985–992

    CAS  PubMed  Google Scholar 

  • Hagiwara S, Kudo M, Nakatani T, Sakaguchi Y, Nagashima M, Fukuta N et al (2007) Combination therapy with PEG-IFN-alpha and 5-FU inhibits HepG2 tumour cell growth in nude mice by apoptosis of p53. Br J Cancer 97(11):15327

    Article  Google Scholar 

  • Kim JS, Lee JM, Chwae YJ, Kim YH, Lee JH, Kim K et al (2004) Cisplatin-induced apoptosis in Hep3B cells: mitochondria-dependent and -independent pathways. Biochem Pharmacol 67(8):1459–1468

    Article  CAS  PubMed  Google Scholar 

  • Lau LM, Nugent JK, Zhao X, Irwin MS (2008) HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 27:997–1003

    Article  CAS  PubMed  Google Scholar 

  • Lee TK, Lau TC, Ng IO (2002) Doxorubicin-induced apoptosis and chemosensitivity in hepatoma cell lines. Cancer Chemother Pharmacol 49(1):78–86

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE et al (1994) p53 status and the efficacy of cancer therapy in vivo. Science 266(5186):807–810

    Article  CAS  PubMed  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ (1992) The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69(7):1237–1245

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi Y, Kawasaki M, Bai F, Takayama K, Pei XH, Takano K et al (1999) Expression of p53 and glutathione S-transferase-pi relates to clinical drug resistance in non-small cell lung cancer. Oncology 57:318–323

    Article  CAS  PubMed  Google Scholar 

  • Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    Article  CAS  PubMed  Google Scholar 

  • Schmidt CM, McKillop IH, Cahill PA, Sitzmann JV (1997) Increased MAPK expression and activity in primary human hepatocellular carcinoma. Biochem Biophys Res Commun 236(1):54–58

    Article  CAS  PubMed  Google Scholar 

  • Van Maerken T, Speleman F, Vermeulen J, Lambertz I, De Clercq S, De Smet E et al (2006) Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res 66(19):9646–9655

    Article  PubMed  Google Scholar 

  • Vassilev LT (2007) MDM2 inhibitors for cancer therapy. Trends Mol Med 13:23–31

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Bayle JH, Olson D, Levine AJ (1993) The p53–mdm-2 autoregulatory feedback loop. Genes and Dev 7:1126–1132

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Li CC, Weissman AM (2004) Regulating the p53 system through ubiquitination. Oncogene 23:2096–2106

    Article  CAS  PubMed  Google Scholar 

  • Zauli G, di Iasio MG, Secchiero P, Dal Bo M, Marconi D, Bomben R et al (2009) Exposure of B cell chronic lymphocytic leukemia (B-CLL) cells to Nutlin-3 induces a characteristic gene expression profile, which correlates with Nutlin-3-mediated cytotoxicity. Curr Cancer Drug Targets 9(4):510–518

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X et al (1999) MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 19(5):3257–3266

    CAS  PubMed  Google Scholar 

  • Zhao M, He HW, Sun HX, Ren KH, Shao RG (2009) Dual knockdown of N-ras and epiregulin synergistically suppressed the growth of human hepatoma cells. Biochem Biophys Res Commun 387(2):239–244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Nishant Bhatta for reviewing the manuscript.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianxin Liu.

Additional information

T. Zheng and J. Wang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, T., Wang, J., Song, X. et al. Nutlin-3 cooperates with doxorubicin to induce apoptosis of human hepatocellular carcinoma cells through p53 or p73 signaling pathways. J Cancer Res Clin Oncol 136, 1597–1604 (2010). https://doi.org/10.1007/s00432-010-0817-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0817-8

Keywords

Navigation