Skip to main content
Log in

Relationship between serum 25-hydroxyvitamin D and red blood cell indices in German adolescents

  • Original Article
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Since the impact of vitamin D on red blood cell formation has not been well studied, we aimed at assessing the putative link between serum 25-hydroxyvitamin D (25[OH]D) concentrations and hematological markers of erythropoiesis in a large cohort of German adolescents aged 11 to 17 years. In total, 5066 participants from the population-based, nationally representative KiGGS study (Kinder- und Jugendgesundheitssurvey, German Health Interview and Examination Survey for Children and Adolescents) were grouped into either tertiles or clinically accepted cutoff levels for serum 25(OH)D. Results demonstrated significant and inverse correlations between 25(OH)D levels and several hematological parameters including hemoglobin concentration (r = − 0.04, p = 0.003), mean corpuscular hemoglobin (r = − 0.11, p < 0.001), red blood cell count (r = − 0.04, p = 0.002), and soluble transferrin receptor (r = − 0.1, p < 0.001), whereas, in contrast, serum 25(OH)D was positively correlated to the mean corpuscular volume of erythrocytes (r = 0.08, p < 0.001). Multinomial regression models adjusted for clinically relevant confounders confirmed statistically significant differences between the two strata of 25(OH)D groups with respect to red blood cell markers (hemoglobin concentration, red blood cell count, mean corpuscular volume, and corpuscular hemoglobin, as well as iron and soluble transferrin receptor).

Conclusions: The link between serum 25(OH)D and several important hematological parameters may point to an inhibitory role of vitamin D in the regulation of erythropoiesis in adolescents.

What is Known:

The physiological effects of vitamin D on calcium homeostasis and bone metabolism have been established.

However, much less is known about the impact of circulating vitamin D on erythropoiesis.

What is New:

Data from the KiGGS study in German adolescents demonstrated significant associations between serum vitamin D concentrations and red blood cell indices.

Further studies should be conducted to decipher the underlying mechanisms of vitamin D on erythropoiesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BMI:

body-mass index

hrQoL:

health-related quality of life

KINDL:

Children’s Quality of Life Questionnaire (Kinder-Lebensqualitätsfragebogen)

1,25(OH)D2:

1.25-dihydroxyvitamin D

25(OH)D:

25-hydroxyvitamin D

SES:

socioeconomic status

References

  1. Albitar S, Genin R, Fen-Chong M, Serveaux MO, Schohn D, Chuet C (1997) High-dose alfacalcidol improves anaemia in patients on haemodialysis. Nephrol Dial Transplant 12(3):514–518

    Article  CAS  PubMed  Google Scholar 

  2. Aref S, Ibrahim L, Azmy E (2013) Prognostic impact of serum 25-hydroxivitamin D [25(OH)D] concentrations in patients with lymphoid malignancies. Hematology 18(1):20–25

    Article  CAS  PubMed  Google Scholar 

  3. Atkinson MA, Melamed ML, Kumar J, Roy CN, Miller ER, Furth SL, Fadrowski JJ (2014) Vitamin D, race, and risk for anemia in children. J Pediatr 164(1):153–158

    Article  CAS  PubMed  Google Scholar 

  4. Baker AR, McDonnell DP, Hughes M, Crisp TM, Mangelsdorf DJ, Haussler MR, Pike JW, Shine J, O'Malley BW (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A 85(10):3294–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bar-Shavit Z, Teitelbaum SL, Reitsma P, Hall A, Pegg LE, Trial J, Kahn AJ (1983) Induction of monocytic differentiation and bone resorption by 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A 80(19):5907–5911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basatemur E, Hunter R, Horsfall L, Sutcliffe A, Rait G (2017) Costs of vitamin D testing and prescribing among children in primary care. Eur J Pediatr 176(10):1405–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlberg C, Seuter S (2009) A genomic perspective on vitamin D signaling. Anticancer Res 29(9):3485–3493

    CAS  PubMed  Google Scholar 

  8. Drake MT, Maurer MJ, Link BK, Habermann TM, Ansell SM, Micallef IN, Kelly JL, Macon WR, Nowakowski GS, Inwards DJ, Johnston PB, Singh RJ, Allmer C, Slager SL, Weiner GJ, Witzig TE, Cerhan JR (2010) Vitamin D insufficiency and prognosis in non-Hodgkin’s lymphoma. J Clin Oncol 28(27):4191–4198

    Article  PubMed  PubMed Central  Google Scholar 

  9. Freedman LP (1999) Transcriptional targets of the vitamin D3 receptor-mediating cell cycle arrest and differentiation. J Nutr 129(S2):S581–S586

    Article  Google Scholar 

  10. Grossman Z, Hadjipanayis A, Stiris T, del Torso S, Mercier JC, Valiulis A, Shamir R (2017) Vitamin D in European children-statement from the European Academy of Paediatrics (EAP). Eur J Pediatr 176(6):829–831

    Article  PubMed  Google Scholar 

  11. Honma Y, Hozumi M, Abe E, Konno K, Fukushima M, Hata S, Nishii Y, DeLuca HF, Suda T (1983) 1α,25-Dihydroxyvitamin D3 and 1α-hydroxyvitamin D3 prolong survival time of mice inoculated with myeloid leukemia cells. Proc Natl Acad Sci U S A 80(1):201–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu M, Lee MH, Cohen M, Bommakanti M, Freedman LP (1996) Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev 10(2):142–153

    Article  CAS  PubMed  Google Scholar 

  13. Ma Y, Johnson CS, Trump DL (2016) Mechanistic insights of vitamin D anticancer effects. Vitam Horm 100:395–431

    Article  PubMed  Google Scholar 

  14. McDonnell DP, Mangelsdorf DJ, Pike JW, Haussler MR, O'Malley BW (1987) Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science 235(4793):1214–1217

    Article  CAS  PubMed  Google Scholar 

  15. Misra M, Pacaud D, Petryk A, Collett-Solberg PF, Kappy M (2008) Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics 122(2):398–417

    Article  PubMed  Google Scholar 

  16. Muto A, Kizaki M, Yamato K, Kawai Y, Kamata-Matsushita M, Ueno H, Ohguchi M, Nishihara T, Koeffler HP, Ikeda Y (1999) 1,25-Dihydroxyvitamin D3 induces differentiation of a retinoic acid-resistant acute promyelocytic leukemia cell line (UF-1) associated with expression of p21(WAF1/CIP1) and p27(KIP1). Blood 93(7):2225–2233

    CAS  PubMed  Google Scholar 

  17. Otero TMN, Monlezun DJ, Christopher KB, Camargo CA, Quraishi SA (2017) Vitamin D status and elevated red cell distribution width in community-dwelling adults: results from the National Health and nutrition examination survey 2001-2006. J Nutr Health Aging 21(10):1176–1182

    Article  CAS  PubMed  Google Scholar 

  18. Ravens-Sieberer U, Ellert U, Erhart M (2007) Health-related quality of life of children and adolescents in Germany. Norm data from the German Health Interview and Examination Survey (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 50(5–6):810–818

    Article  CAS  PubMed  Google Scholar 

  19. Schäfer TK, Herrmann-Lingen C, Meyer T (2016) Association of circulating 25-hydroxyvitamin D with mental well-being in a population-based, nationally representative sample of German adolescents. Qual Life Res 25(12):3077–3086

    Article  PubMed  Google Scholar 

  20. Shanafelt TD, Drake MT, Maurer MJ, Allmer C, Rabe KG, Slager SL, Weiner GJ, Call TG, Link BK, Zent CS, Kay NE, Hanson CA, Witzig TE, Cerhan JR (2011) Vitamin D insufficiency and prognosis in chronic lymphocytic leukemia. Blood 117(5):1492–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sim JJ, Lac PT, Liu IL, Meguerditchian SO, Kumar VA, Kujubu DA, Rasgon SA (2010) Vitamin D deficiency and anemia: a cross-sectional study. Ann Hematol 89(5):447–452

    Article  CAS  PubMed  Google Scholar 

  22. Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF (1999) Fetal anemia and apoptosis of red cell progenitors in Stat5a 5b mice: a direct role for Stat5 in Bcl-X induction. Cell 98(2):181–191

    Article  CAS  PubMed  Google Scholar 

  23. Souberbielle JC, Fayol V, Sault C, Lawson-Body E, Kahan A, Cormier C (2005) Assay-specific decision limits for two new automated parathyroid hormone and 25-hydroxyvitamin D assays. Clin Chem 51(2):395–400

    Article  CAS  PubMed  Google Scholar 

  24. Sutton AL, MacDonald PN (2003) Vitamin D: more than a “bone-a-fide” hormone. Mol Endocrinol 17(5):777–791

    Article  CAS  PubMed  Google Scholar 

  25. Thierfelder W, Dortschy R, Hintzpeter B, Kahl H, Scheidt-Nave C (2007) Biochemical measures in the German Health Interview and Examination Survey for Children and adolescents (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 50(5–6):757–770

    Article  CAS  PubMed  Google Scholar 

  26. Thomas CE, Guillet R, Queenan RA, Cooper EM, Kent TR, Pressman EK, Vermeylen FM, Roberson MS, O'Brien KO (2015) Vitamin D status is inversely associated with anemia and serum erythropoietin during pregnancy. Am J Clin Nutr 102(5):1088–1095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wallace AM, Gibson S, de la Hunty A, Lamberg-Allardt C, Ashwell M (2010) Measurement of 25-hydroxyvitamin D in the clinical laboratory: current procedures, performance characteristics and limitations. Steroids 75(7):477–488

    Article  CAS  PubMed  Google Scholar 

  28. Winkler J, Stolzenberg H (1999) Social class index in the Federal Health Survey. Gesundheitswesen 61:S178–S183

    PubMed  Google Scholar 

  29. Yang M, Yang BO, Gan H, Li X, Xu J, Yu J, Gao L, Li F (2015) Anti-inflammatory effect of 1,25-dihydroxyvitamin D3 is associated with crosstalk between signal transducer and activator of transcription 5 and the vitamin D receptor in human monocytes. Exp Ther Med 9(5):1739–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yuan FN, Valiyaparambil J, Woods MC, Tran H, Pant R, Adams JS, Mallaya SM (2014) Vitamin D signaling regulates oral keratinocyte proliferation in vitro and in vivo. Int J Oncol 44(5):1625–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the KiGGS study team from the Robert Koch Institute for providing us with their public use data file.

Author information

Authors and Affiliations

Authors

Contributions

Asmma Doudin and Thomas Meyer analyzed the data and performed the statistical analyses. Asmma Doudin drafted the manuscript. All authors participated to the draft of the manuscript, and read and approved its final version.

Corresponding author

Correspondence to Thomas Meyer.

Ethics declarations

The study protocol was approved by the Charité/Universitätsmedizin Berlin ethics committee and the Federal Office for the Protection of Data.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Mario Bianchetti

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doudin, A., Becker, A., Rothenberger, A. et al. Relationship between serum 25-hydroxyvitamin D and red blood cell indices in German adolescents. Eur J Pediatr 177, 583–591 (2018). https://doi.org/10.1007/s00431-018-3092-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00431-018-3092-3

Keywords

Navigation