Skip to main content

Advertisement

Log in

Increased SAMHD1 transcript expression correlates with interferon-related genes in HIV-1-infected patients

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the contribution of SAMHD1 to HIV-1 infection in vivo and its relationship with IFN response, the expression of SAMHD1 and IFN-related pathways was evaluated in HIV-1-infected patients.

Methods

Peripheral blood mononuclear cells (PBMC) from 388 HIV-1-infected patients, both therapy naïve (n = 92) and long-term HAART treated (n = 296), and from 100 gender and age-matched healthy individuals were examined. CD4+ T cells, CD14+ monocytes and gut biopsies were also analyzed in HIV-1-infected subjects on suppressive antiretroviral therapy. Gene expression levels of SAMDH1, ISGs (MxA, MxB, HERC5, IRF7) and IRF3 were evaluated by real-time RT-PCR assays.

Results

SAMHD1 levels in HIV-1-positive patients were significantly increased compared to those in healthy donors. SAMHD1 expression was enhanced in treated patients compared to naïve patients (p < 0.0001) and healthy donors (p = 0.0038). Virologically suppressed treated patients exhibited higher SAMHD1 levels than healthy donors (p = 0.0008), viraemic patients (p = 0.0001) and naïve patients (p < 0.0001). SAMHD1 levels were also increased in CD4+ T cells compared to those in CD14+ monocytes and in PBMC compared to those of GALT. Moreover, SAMHD1 was expressed more strongly than ISGs in HIV-1-infected patients and positive correlations were found between SAMHD1, ISGs and IRF3 levels.

Conclusions

SAMHD1 is more strongly expressed than the classical IFN-related genes, increased during antiretroviral therapy and correlated with ISGs and IRF3 in HIV-1-infected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Antonucci JM, St Gelais C, Wu L (2017) The dynamic interplay between HIV-1, SAMHD1, and the innate antiviral response. Front Immunol 8:1541. https://doi.org/10.3389/fimmu.2017.01541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13(3):223–228. https://doi.org/10.1038/ni.2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480(7377):379–382. https://doi.org/10.1038/nature10623

    Article  CAS  PubMed  Google Scholar 

  4. Jia X, Zhao Q, Xiong Y (2015) HIV suppression by host restriction factors and viral immune evasion. Curr Opin Struct Biol 31:106–114. https://doi.org/10.1016/j.sbi.2015.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Baldauf HM, Pan X, Erikson E, Schmidt S, Daddacha W, Burggraf M, Schenkova K, Ambiel I, Wabnitz G, Gramberg T, Panitz S, Flory E, Landau NR, Sertel S, Rutsch F, Lasitschka F, Kim B, König R, Fackler OT, Keppler OT (2012) SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 18(11):1682–1687. https://doi.org/10.1038/nm.2964

    Article  CAS  PubMed  Google Scholar 

  6. Schmidt S, Schenkova K, Adam T, Erikson E, Lehmann-Koch J, Sertel S, Verhasselt B, Fackler OT, Lasitschka F, Keppler OT (2015) SAMHD1’s protein expression profile in humans. J Leukoc Biol 98(1):5–14. https://doi.org/10.1189/jlb.4HI0714-338RR

    Article  CAS  PubMed  Google Scholar 

  7. Simon V, Bloch N, Landau NR. Intrinsic host restrictions to HIV-1 and mechanisms of viral escape. Nat Immunol 2015, 16(6):546–53. https://doi.org/10.1038/ni.3156

  8. Ryoo J, Choi J, Oh C, Kim S, Seo M, Kim SY, Seo D, Kim J, White TE, Brandariz-Nuñez A, Diaz-Griffero F, Yun CH, Hollenbaugh JA, Kim B, Baek D, Ahn K (2014) The ribonuclease activity of SAMHD1 is required for HIV-1 restriction. Nat Med 20(8):936–941. https://doi.org/10.1038/nm.3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang Z, Greene WC (2014) A new activity for SAMHD1 in HIV restriction. Nat Med 20(8):808–809. https://doi.org/10.1038/nm.3657

    Article  CAS  PubMed  Google Scholar 

  10. Antonucci JM, St Gelais C, de Silva S, Yount JS, Tang C, Ji X, Shepard C, Xiong Y, Kim B, Wu L (2016) SAMHD1-mediated HIV-1 restriction in cells does not involve ribonuclease activity. Nat Med 22(10):1072–1074. https://doi.org/10.1038/nm.4163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Ségéral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474(7353):654–657. https://doi.org/10.1038/nature10117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474(7353):658–661. https://doi.org/10.1038/nature10195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gramberg T, Kahle T, Bloch N, Wittmann S, Müllers E, Daddacha W, Hofmann H, Kim B, Lindemann D, Landau NR. Restriction of diverse retroviruses by SAMHD1. Retrovirology 2013, 10:26. https://doi.org/10.1186/1742-4690-10-26

  14. Sze A, Belgnaoui SM, Olagnier D, Lin R, Hiscott J, van Grevenynghe J (2013) Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis. Cell Host Microbe 14(4):422–434. https://doi.org/10.1016/j.chom.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  15. Sze A, Olagnier D, Lin R, van Grevenynghe J, Hiscott J (2013) SAMHD1 host restriction factor: a link with innate immune sensing of retrovirus infection. J Mol Biol 425(24):4981–4994. https://doi.org/10.1016/j.jmb.2013.10.022

    Article  CAS  PubMed  Google Scholar 

  16. Chen Z, Zhang L, Ying S (2012) SAMHD1: a novel antiviral factor in intrinsic immunity. Future Microbiol 7(9):1117–1126. https://doi.org/10.2217/fmb.12.81

    Article  CAS  PubMed  Google Scholar 

  17. Kim ET, White TE, Brandariz-Núñez A, Diaz-Griffero F, Weitzman MD (2013) SAMHD1 restricts herpes simplex virus 1 in macrophages by limiting DNA replication. J Virol 87(23):12949–12956. https://doi.org/10.1128/JVI.02291-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Z, Zhu M, Pan X, Zhu Y, Yan H, Jiang T, Shen Y, Dong X, Zheng N, Lu J, Ying S, Shen Y (2014) Inhibition of Hepatitis B virus replication by SAMHD1. Biochem Biophys Res Commun 450(4):1462–1468. https://doi.org/10.1016/j.bbrc.2014.07.023

    Article  CAS  PubMed  Google Scholar 

  19. Riveira-Muñoz E, Ruiz A, Pauls E, Permanyer M, Badia R, Mothe B, Crespo M, Clotet B, Brander C, Ballana E, Esté JA (2014) Increased expression of SAMHD1 in a subset of HIV-1 elite controllers. J Antimicrob Chemother 69(11):3057–3060. https://doi.org/10.1093/jac/dku276

    Article  CAS  PubMed  Google Scholar 

  20. Bolduan S, Koppensteiner H, Businger R, Rebensburg S, Kunze C, Brack-Werner R, Draenert R, Schindler M (2017) T cells with low CD2 levels express reduced restriction factors and are preferentially infected in therapy naïve chronic HIV-1 patients. J Int AIDS Soc 20(1):21865. https://doi.org/10.7448/IAS.20.1.21865

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fu W, Qiu C, Zhou M, Zhu L, Yang Y, Qiu C, Zhang L, Xu X, Wang Y, Xu J, Zhang X (2016) Immune Activation Influences SAMHD1 Expression and Vpx-mediated SAMHD1 Degradation during Chronic HIV-1 Infection. Sci Rep 6:38162. https://doi.org/10.1038/srep38162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiselinova M, De Spiegelaere W, Buzon MJ, Malatinkova E, Lichterfeld M, Vandekerckhove L (2016) Integrated and Total HIV-1 DNA Predict Ex Vivo Viral Outgrowth. PLoS Pathog 12(3):e1005472. https://doi.org/10.1371/journal.ppat.1005472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Berger A, Sommer AF, Zwarg J, Hamdorf M, Welzel K, Esly N, Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LC, Fernandez-Sesma A, Rutsch F, Simon V, König R, Flory E (2011) SAMHD1-deficient CD14 + cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog 7(12):e1002425. https://doi.org/10.1371/journal.ppat.1002425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goujon C, Schaller T, Galão RP, Amie SM, Kim B, Olivieri K, Neil SJ, Malim MH (2013) Evidence for IFNα-induced, SAMHD1-independent inhibitors of early HIV-1 infection. Retrovirology 10:23. https://doi.org/10.1186/1742-4690-10-23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. St Gelais C, de Silva S, Amie SM, Coleman CM, Hoy H, Hollenbaugh JA, Kim B, Wu L (2012) SAMHD1 restricts HIV-1 infection in dendritic cells (DCs) by dNTP depletion, but its expression in DCs and primary CD4 + T-lymphocytes cannot be upregulated by interferons. Retrovirology 9:105. https://doi.org/10.1186/1742-4690-9-105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bloch N, O’Brien M, Norton TD, Polsky SB, Bhardwaj N, Landau NR (2014) HIV type 1 infection of plasmacytoid and myeloid dendritic cells is restricted by high levels of SAMHD1 and cannot be counteracted by Vpx. AIDS Res Hum Retroviruses 30(2):195–203. https://doi.org/10.1089/AID.2013.0119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang S, Zhan Y, Zhou Y, Jiang Y, Zheng X, Yu L, Tong W, Gao F, Li L, Huang Q, Ma Z, Tong G (2012) Interferon regulatory factor 3 is a key regulation factor for inducing the expression of SAMHD1 in antiviral innate immunity. Sci Rep 6:29665. https://doi.org/10.1038/srep29665

    Article  CAS  Google Scholar 

  28. Harris RS, Hultquist JF, Evans DT (2012) The restriction factors of human immunodeficiency virus. J Biol Chem 287(49):40875–40883. https://doi.org/10.1074/jbc.R112.416925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cribier A, Descours B, Valadão AL, Laguette N, Benkirane M (2013) Phosphorylation of SAMHD1 by cyclin A2/CDK1 regulates its restriction activity toward HIV-1. Cell Rep 3(4):1036–1043. https://doi.org/10.1016/j.celrep.2013.03.017

    Article  CAS  PubMed  Google Scholar 

  30. Sandstrom TS, Ranganath N, Angel JB (2017) Impairment of the type I interferon response by HIV-1: Potential targets for HIV eradication. Cytokine Growth Factor Rev 37:1–16. https://doi.org/10.1016/j.cytogfr.2017.04.004

    Article  CAS  PubMed  Google Scholar 

  31. Soper A, Kimura I, Nagaoka S, Konno Y, Yamamoto K, Koyanagi Y, Sato K (2018) Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control. Front Immunol 8:1823. https://doi.org/10.3389/fimmu.2017.01823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. d’Ettorre G, Ceccarelli G, Andreotti M, Selvaggi C, Giustini N, Serafino S, Schietroma I, Nunnari G, Antonelli G, Vullo V, Scagnolari C (2015) Analysis of Th17 and Tc17 Frequencies and Antiviral Defenses in Gut-Associated Lymphoid Tissue of Chronic HIV-1 Positive Patients. Mediators Inflamm 2015:395484. https://doi.org/10.1155/2015/395484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pierangeli A, Degener AM, Ferreri ML, Riva E, Rizzo B, Turriziani O, Luciani S, Scagnolari C, Antonelli G (2011) Interferon-induced gene expression in cervical mucosa during human papillomavirus infection. Int J Immunopathol Pharmacol 24(1):217–223. https://doi.org/10.1177/039463201102400126

    Article  CAS  PubMed  Google Scholar 

  34. Scagnolari C, Monteleone K, Selvaggi C, Pierangeli A, D’Ettorre G, Mezzaroma I, Turriziani O, Gentile M, Vullo V, Antonelli G (2016) ISG15 expression correlates with HIV-1 viral load and with factors regulating T cell response. Immunobiology 221(2):282–290. https://doi.org/10.1016/j.imbio.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  35. Buchanan EL, McAlexander MA, Witwer KW (2015) SAMHD1 expression in blood cells of HIV-1 elite suppressors and viraemic progressors. J Antimicrob Chemother 70(3):954–956. https://doi.org/10.1093/jac/dku428

    Article  CAS  PubMed  Google Scholar 

  36. Ruffin N, Brezar V, Ayinde D, Lefebvre C, Schulze Zur Wiesch J, van Lunzen J, Bockhorn M, Schwartz O, Hocini H, Lelievre JD, Banchereau J, Levy Y, Seddiki N (2015) Low SAMHD1 expression following T-cell activation and proliferation renders CD4 + T cells susceptible to HIV-1. AIDS 29(5):519–530. https://doi.org/10.1097/QAD.0000000000000594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huber AD, Michailidis E, Schultz ML, Ong YT, Bloch N, Puray-Chavez MN et al (2014) SAMHD1 has differential impact on the efficacies of HIV nucleoside reverse transcriptase inhibitors. Antimicrob Agents Chemother 58:4915–4919. https://doi.org/10.1128/AAC.02745-1

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ballana E, Badia R, Terradas G, Torres-Torronteras J, Ruiz A, Pauls E et al (2014) SAMHD1 specifically affects the antiviral potency of thymidine analog HIV reverse transcriptase inhibitors. Antimicrob Agents Chemother 58:4804–4813. https://doi.org/10.1128/AAC.03145-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ordonez P, Kunzelmann S, Groom HC, Yap MW, Weising S, Meier C et al (2017) SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells. Sci Rep 7:42824. https://doi.org/10.1038/srep42824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Buchanan EL, Espinoza DA, McAlexander MA, Myers SL, Moyer A, Witwer KW (2016) SAMHD1 transcript upregulation during SIV infection of the central nervous system does not associate with reduced viral load. Sci Rep 6:22629. https://doi.org/10.1038/srep22629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu H, Usmani SM, Borch A, Krämer J, Stürzel CM, Khalid M, Li X, Krnavek D, van der Ende ME, Osterhaus AD, Gruters RA, Kirchhoff F (2013) The efficiency of Vpx-mediated SAMHD1 antagonism does not correlate with the potency of viral control in HIV-2-infected individuals. Retrovirology 10:27. https://doi.org/10.1186/1742-4690-10-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Coiras M, Bermejo M, Descours B, Mateos E, García-Pérez J, LóHYP-Huertas MR, Lederman MM, Benkirane M, Alcamí J (2016) IL-7 Induces SAMHD1 Phosphorylation in CD4 + T Lymphocytes, Improving Early Steps of HIV-1 Life Cycle. Cell Rep 14(9):2100–2107. https://doi.org/10.1016/j.celrep.2016.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liao W, Bao Z, Cheng C, Mok YK, Wong WS. Dendritic cell-derived interferon-gamma-induced protein mediates tumor necrosis factor-alpha stimulation of human lung fibroblasts. Proteomics 2008, 8(13):2640–50. https://doi.org/10.1002/pmic.200700954

  44. Pauls E, Jimenez E, Ruiz A, Permanyer M, Ballana E, Costa H, Nascimiento R, Parkhouse RM, Peña R, Riveiro-Muñoz E, Martinez MA, Clotet B, Esté JA, Bofill M (2013) Restriction of HIV-1 replication in primary macrophages by IL-12 and IL-18 through the upregulation of SAMHD1. J Immunol 190(9):4736–4741. https://doi.org/10.4049/jimmunol.1203226

    Article  CAS  PubMed  Google Scholar 

  45. Buitendijk M, Eszterhas SK, Howell AL (2014) Toll-like receptor agonists are potent inhibitors of human immunodeficiency virus-type 1 replication in peripheral blood mononuclear cells. AIDS Res Hum Retroviruses 30(5):457–467. https://doi.org/10.1089/AID.2013.0199

    Article  CAS  PubMed  Google Scholar 

  46. Sang M, Liu JB, Dai M, Wu JG, Ho WZ (2014) Toll-like receptor 3 signaling inhibits simian immunodeficiency virus replication in macrophages from rhesus macaques. Antiviral Res 112:103–112. https://doi.org/10.1016/j.antiviral.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  47. Dragin L, Nguyen LA, Lahouassa H, Sourisce A, Kim B, Ramirez BC, Margottin-Goguet F (2013) Interferon block to HIV-1 transduction in macrophages despite SAMHD1 degradation and high deoxynucleoside triphosphates supply. Retrovirology 10:30. https://doi.org/10.1186/1742-4690-10-30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Riess M, Fuchs NV, Idica A, Hamdorf M, Flory E, Pedersen IM, König R (2017) Interferons Induce Expression of SAMHD1 in Monocytes through Down-regulation of miR-181a and miR-30a. J Biol Chem 292(1):264–277. https://doi.org/10.1074/jbc.M116.752584

    Article  CAS  PubMed  Google Scholar 

  49. Altfeld M, Gale M Jr (2015) Innate immunity against HIV-1 infection. Nat Immunol 16(6):554–562. https://doi.org/10.1038/ni.3157

    Article  CAS  PubMed  Google Scholar 

  50. Blasius AL, Beutler B (2010) Intracellular toll-like receptors. Immunity 32(3):305–315. https://doi.org/10.1016/j.immuni.2010.03.012

    Article  CAS  PubMed  Google Scholar 

  51. Kawai T, Akira S (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34(5):637–650. https://doi.org/10.1016/j.immuni.2011.05.006

    Article  CAS  PubMed  Google Scholar 

  52. Ramos HJ, Gale M Jr (2011) RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr Opin Virol 1(3):167–176. https://doi.org/10.1016/j.coviro.2011.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Loo YM, Gale M Jr (2011) Immune signaling by RIG-I-like receptors. Immunity 34(5):680–692. https://doi.org/10.1016/j.immuni.2011.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. White TE, Brandariz-Nuñez A, Martinez-Lopez A, Knowlton C, Lenzi G, Kim B, Ivanov D, Diaz-Griffero F (2017) A SAMHD1 mutation associated with Aicardi-Goutières syndrome uncouples the ability of SAMHD1 to restrict HIV-1 from its ability to downmodulate type I interferon in humans. Hum Mutat 38(6):658–668. https://doi.org/10.1002/humu.23201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Oh C, Ryoo J, Park K, Kim B, Daly MB, Cho D, Ahn K (2018) A central role for PI3K-AKT signaling pathway in linking SAMHD1-deficiency to the type I interferon signature. Sci Rep 8(1):84. https://doi.org/10.1038/s41598-017-18308-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Liu SY, Sanchez DJ, Aliyari R, Lu S, Cheng G (2012) Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci USA 109(11):4239–4244. https://doi.org/10.1073/pnas.1114981109

    Article  CAS  PubMed  Google Scholar 

  57. Cheon H, Holvey-Bates EG, Schoggins JW, Forster S, Hertzog P, Imanaka N, Rice CM, Jackson MW, Junk DJ, Stark GR (2013) IFNβ-dependent increases in STAT1, STAT2, and IRF9 mediate resistance to viruses and DNA damage. EMBO J 32(20):2751–2763. https://doi.org/10.1038/emboj.2013.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Scagnolari C, Antonelli G (2018) Type I interferon and HIV: Subtle balance between antiviral activity, immunopathogenesis and the microbiome. Cytokine Growth Factor Rev 40:19–31. https://doi.org/10.1016/j.cytogfr.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  59. Rodero MP, Decalf J, Bondet V, Hunt D, Rice GI, Werneke S, McGlasson SL, Alyanakian MA, Bader-Meunier B, Barnerias C, Bellon N, Belot A, Bodemer C, Briggs TA, Desguerre I, Frémond ML, Hully M, van den Maagdenberg AMJM, Melki I, Musset L, Pelzer N, Quartier P, Terwindt GM, Wardlaw J, Wiseman S, Rieux-Laucat F, Rose Y, Neven B, Hertel C, Hayday A, Albert ML, Rozenberg F, Crow YJ, Duffy D (2017) Detection of interferon alpha protein reveals differential levels and cellular sources in disease. J Exp Med 214(5):1547–1555. https://doi.org/10.1084/jem.20161451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. El-Sherbiny YM, Psarras A, Yusof MYM, Hensor EMA, Tooze R, Doody G, Mohamed AAA, McGonagle D, Wittmann M, Emery P, Vital EM (2018) A novel two-score system for interferon status segregates autoimmune diseases and correlates with clinical features. Sci Rep 8(1):5793. https://doi.org/10.1038/s41598-018-24198-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Descours B, Cribier A, Chable-Bessia C, Ayinde D, Rice G, Crow Y, Yatim A, Schwartz O, Laguette N, Benkirane M (2012) SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4(+) T-cells. Retrovirology 9:87. https://doi.org/10.1186/1742-4690-9-87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Pinacchio C, Scheri GC, Statzu M, Santinelli L, Ceccarelli G, Innocenti GP, Vullo V, Antonelli G, Brenchley JM, d’Ettorre G, Scagnolari C (2018) Type I/II interferon in HIV-1-infected patients: expression in gut mucosa and in peripheral blood mononuclear cells and its modification upon probiotic supplementation. J Immunol Res 2018:1738676. https://doi.org/10.1155/2018/1738676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Badia R, Pujantell M, Torres-Torronteras J, Menéndez-Arias L, Martí R, Ruzo A, Pauls E, Clotet B, Ballana E, Esté JA (2017) Riveira-Muñoz E. SAMHD1 is active in cycling cells permissive to HIV-1 infection. Antiviral Res 142:123–135. https://doi.org/10.1016/j.antiviral.2017.03.019

    Article  CAS  PubMed  Google Scholar 

  64. Ruiz A, Pauls E, Badia R, Torres-Torronteras J, Riveira-Muñoz E, Clotet B, Martí R, Ballana E, Esté JA (2015) Cyclin D3-dependent control of the dNTP pool and HIV-1 replication in human macrophages. Cell Cycle 14(11):1657–1665. https://doi.org/10.1080/15384101.2015.1030558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pauls E, Ruiz A, Badia R, Permanyer M, Gubern A, Riveira-Muñoz E, Torres-Torronteras J, Alvarez M, Mothe B, Brander C, Crespo M, Menéndez-Arias L, Clotet B, Keppler OT, Martí R, Posas F, Ballana E, Esté JA (2014) Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 phosphorylation of SAMHD1 in myeloid and lymphoid cells. J Immunol 193(4):1988–1997. https://doi.org/10.4049/jimmunol.1400873

    Article  CAS  PubMed  Google Scholar 

  66. Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973. https://doi.org/10.1016/j.febslet.2009.10.036

    Article  CAS  PubMed  Google Scholar 

  67. Kohnken R, Kodigepalli KM, Mishra A, Porcu P, Wu L (2017) MicroRNA-181 contributes to downregulation of SAMHD1 expression in CD4+ T-cells derived from Sèzary syndrome patients. Leuk Res 52:58–66. https://doi.org/10.1016/j.leukres.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  68. Wang JL, Lu FZ, Shen XY, Wu Y, Zhao LT (2014) SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation. Biochem Biophys Res Commun 455(3–4):229–233. https://doi.org/10.1016/j.bbrc.2014.10.153

    Article  CAS  PubMed  Google Scholar 

  69. Lee EJ, Seo JH, Park JH, Vo TTL, An S, Bae SJ, Le H, Lee HS, Wee HJ, Lee D, Chung YH, Kim JA, Jang MK, Ryu SH, Yu E, Jang SH, Park ZY, Kim KW (2017) SAMHD1 acetylation enhances its deoxynucleotide triphosphohydrolase activity and promotes cancer cell proliferation. Oncotarget 8(40):68517–68529. https://doi.org/10.18632/oncotarget.19704

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant to C.S. (Carolina Scagnolari) from Sapienza University of Rome (Finanziamenti di ateneo per la ricerca scientifica - anno 2017, RM11715C586062AF).

Author information

Authors and Affiliations

Authors

Contributions

MS wrote the paper, carried out the experiment and performed statistical analysis. LS, AV, CP, and CR collected the samples and participated in carrying out the experiments. IM, GC and GD provided patient’s samples and participated in the design and revision of the manuscript. OT and GA participated in the design and revision of the manuscript. CS conceived the study, analyzed the data, wrote the paper and supervised the work. All authors reviewed the work and approved the final manuscript.

Corresponding author

Correspondence to Carolina Scagnolari.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Additional information

Edited by: O.T. Keppler.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Statzu, M., Santinelli, L., Viscido, A. et al. Increased SAMHD1 transcript expression correlates with interferon-related genes in HIV-1-infected patients. Med Microbiol Immunol 208, 679–691 (2019). https://doi.org/10.1007/s00430-018-0574-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-018-0574-x

Keywords

Navigation