Skip to main content

Advertisement

Log in

Immune response triggered by Trypanosoma cruzi infection strikes adipose tissue homeostasis altering lipid storage, enzyme profile and adipokine expression

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Adipose tissue is a target of Trypanosoma cruzi infection being a parasite reservoir during the chronic phase in mice and humans. Previously, we reported that acute Trypanosoma cruzi infection in mice is linked to a severe adipose tissue loss, probably triggered by inflammation, as well as by the parasite itself. Here, we evaluated how infection affects adipose tissue homeostasis, considering adipocyte anabolic and catabolic pathways, the immune–endocrine pattern and the possible repercussion upon adipogenesis. During in vivo infection, both lipolytic and lipogenic pathways are profoundly affected, since the expression of lipolytic enzymes and lipogenic enzymes was intensely downregulated. A similar pattern was observed in isolated adipocytes from infected animals and in 3T3-L1 adipocytes infected in vitro with Trypanosoma cruzi. Moreover, 3T3-L1 adipocytes exposed to plasmas derived from infected animals also tend to downregulate lipolytic enzyme expression which was less evident regarding lipogenic enzymes. Moreover, in vivo-infected adipose tissue reveals a pro-inflammatory profile, with increased leucocyte infiltration accompanied by TNF and IL-6 overexpression, and adiponectin downregulation. Strikingly, the nuclear factor PPAR-γ is strongly decreased in adipocytes during in vivo infection. Attempts to favor PPAR-γ-mediated actions in the adipose tissue of infected animals using agonists failed, indicating that inflammation or parasite-derived factors are strongly involved in PPAR-γ inhibition. Here, we report that experimental acute Trypanosoma cruzi infection disrupts both adipocyte catabolic and anabolic metabolism secondary to PPAR-γ robust downregulation, tipping the balance towards to an adverse status compatible with the adipose tissue atrophy and the acquisition of an inflammatory phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Choe SS, Huh JY, Hwang IJ et al (2016) Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne) 7:30

    Article  Google Scholar 

  2. Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556. https://doi.org/10.1210/jc.2004-0395

    Article  CAS  PubMed  Google Scholar 

  3. Halberg N, Wernstedt-Asterholm I, Scherer PE (2008) The adipocyte as an endocrine cell. Endocrinol Metab Clin N Am 37:753–768

    Article  CAS  Google Scholar 

  4. Scherer PE (2016) The multifaceted roles of adipose tissue—therapeutic targets for diabetes and beyond: the 2015 banting lecture. Diabetes 65:1452–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Luo L, Liu M (2016) Adipose tissue in control of metabolism. J Endocrinol 231:R77–R99

    Article  CAS  PubMed  Google Scholar 

  6. Yen C-LE, Stone SJ, Koliwad S et al (2008) Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res 49:2283–2301. https://doi.org/10.1194/jlr.R800018-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wakil SJ (1989) Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28:4523–4530. https://doi.org/10.1021/bi00437a001

    Article  CAS  PubMed  Google Scholar 

  8. Haemmerle G, Zimmermann R, Hayn M et al (2002) Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J Biol Chem 277:4806–4815. https://doi.org/10.1074/jbc.M110355200

    Article  CAS  PubMed  Google Scholar 

  9. Zimmermann R, Strauss JG, Haemmerle G et al (2004) Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306:1383–1386. https://doi.org/10.1126/science.1100747

    Article  CAS  PubMed  Google Scholar 

  10. Schweiger M, Schreiber R, Haemmerle G et al (2006) Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J Biol Chem 281:40236–40241. https://doi.org/10.1074/jbc.M608048200

    Article  CAS  PubMed  Google Scholar 

  11. Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Charó NL, Rodríguez Ceschan MI, Galigniana NM et al (2016) Organization of nuclear architecture during adipocyte differentiation. Nucleus 7:249–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tontonoz P, Spiegelman BM (2008) Fat and beyond: the diverse biology of PPARγ. Annu Rev Biochem 77:289–312. https://doi.org/10.1146/annurev.biochem.77.061307.091829

    Article  CAS  PubMed  Google Scholar 

  14. Tamori Y, Masugi J, Nishino N, Kasuga M (2002) Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51:2045–2055. https://doi.org/10.2337/diabetes.51.7.2045

    Article  CAS  PubMed  Google Scholar 

  15. Zhang B, Berger J, Hu E et al (1996) Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol 10:1457–1466. https://doi.org/10.1210/mend.10.11.8923470

    Article  CAS  PubMed  Google Scholar 

  16. Imai T, Takakuwa R, Marchand S et al (2004) Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. Proc Natl Acad Sci USA 101:4543–4547. https://doi.org/10.1073/pnas.0400356101

    Article  CAS  PubMed  Google Scholar 

  17. Kim SR, Lee KS, Park HS et al (2005) Involvement of IL-10 in peroxisome proliferator-activated receptor gamma-mediated anti-inflammatory response in asthma. Mol Pharmacol 68:1568–1575. https://doi.org/10.1124/mol.105.017160

    Article  CAS  PubMed  Google Scholar 

  18. Ferreira AE, Sisti F, Sonego F et al (2014) PPAR-γ/IL-10 axis inhibits MyD88 expression and ameliorates murine polymicrobial sepsis. J Immunol 192:2357–2365. https://doi.org/10.4049/jimmunol.1302375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Choi JM, Bothwell ALM (2012) The nuclear receptor PPARs as important regulators of T-cell functions and autoimmune diseases. Mol Cells 33:217–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang XY, Wang LH, Farrar WL (2008) A role for PPARgamma in the regulation of cytokines in immune cells and cancer. PPAR Res 2008:961753. https://doi.org/10.1155/2008/961753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang D, Shi L, Xin W et al (2017) Activation of PPARγ inhibits pro-inflammatory cytokines production by upregulation of miR-124 in vitro and in vivo. Biochem Biophys Res Commun 486:726–731. https://doi.org/10.1016/j.bbrc.2017.03.106

    Article  CAS  PubMed  Google Scholar 

  22. Yang XY, H WL, Chen T et al (2000) Activation of human T lymphocytes is inhibited by peroxisome proliferator-activated receptor γ (PPARγ) agonists. J Biol 275:4541–4545

    CAS  Google Scholar 

  23. Miettinen S, Sarkanen JR, Ashammakhi N (2008) Adipose tissue and adipocyte differentiation: molecular and cellular aspects and tissue engineering applications. Top Tissue Eng 4:1–26

    Google Scholar 

  24. Lefterova MI, Zhang Y, Steger DJ et al (2008) PPARγ and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes Dev 22:2941–2952. https://doi.org/10.1101/gad.1709008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roggero E, Perez A, Tamae-Kakazu M et al (2002) Differential susceptibility to acute Trypanosoma cruzi infection in BALB/c and C57BL/6 mice is not associated with a distinct parasite load but cytokine abnormalities. Clin Exp Immunol 128:421–428. https://doi.org/10.1046/j.1365-2249.2002.01874.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Roggero E, Pérez AR, Tamae-Kakazu M et al (2006) Endogenous glucocorticoids cause thymus atrophy but are protective during acute Trypanosoma cruzi infection. J Endocrinol 190:495–503. https://doi.org/10.1677/joe.1.06642

    Article  CAS  PubMed  Google Scholar 

  27. Tanowitz HB, Amole B, Hewlett D, Wittner M (1988) Trypanosoma cruzi infection in diabetic mice. Trans R Soc Trop Med Hyg 82:90–93

    Article  CAS  PubMed  Google Scholar 

  28. Manarin R, Villar SR, Bussy RF et al (2013) Reciprocal influences between leptin and glucocorticoids during acute Trypanosoma cruzi infection. Med Microbiol Immunol 202:339–352. https://doi.org/10.1007/s00430-013-0294-1

    Article  CAS  PubMed  Google Scholar 

  29. Combs TP, Nagajyothi J, Mukherjee S et al (2005) The adipocyte as an important target cell for Trypanosoma cruzi infection. J Biol Chem 280:24085–24094. https://doi.org/10.1074/jbc.M412802200

    Article  CAS  PubMed  Google Scholar 

  30. Matos Ferreira AV, Segatto M, Menezes Z et al (2011) Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease. Microbes Infect 13:1002–1005. https://doi.org/10.1016/j.micinf.2011.06.002

    Article  Google Scholar 

  31. Nagajyothi F, Desruisseaux MS, MacHado FS et al (2012) Response of adipose tissue to early infection with Trypanosoma cruzi (Brazil Strain). J Infect Dis 205:830–840. https://doi.org/10.1093/infdis/jir840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zingales B, Andrade SG, Briones MRS et al (2009) A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. https://doi.org/10.1590/S0074-02762009000700021

    Article  PubMed  Google Scholar 

  33. Toneatto J, Guber S, Charo NL et al (2013) Dynamic mitochondrial-nuclear redistribution of the immunophilin FKBP51 is regulated by the PKA signaling pathway to control gene expression during adipocyte differentiation. J Cell Sci 126:5357–5368. https://doi.org/10.1242/jcs.125799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Capilla J, Clemons KV, Liu M et al (2009) Saccharomyces cerevisiae as a vaccine against coccidioidomycosis. Vaccine. https://doi.org/10.1016/j.vaccine.2009.03.030

    Article  PubMed  Google Scholar 

  35. Tracey KJ, Cerami A (1990) Metabolic responses to cachectin/TNF. A brief review. Ann N Y Acad Sci 587:325–331

    Article  CAS  PubMed  Google Scholar 

  36. Maudelonde T, Lluis F (2005) PPAR gamma ligands and the control of metabolism. Med Ther Med la Reprod 7:127–132

    Google Scholar 

  37. Larsen TM, Toubro S, Astrup A (2003) PPARgamma agonists in the treatment of type II diabetes: Is increased fatness commensurate with long-term efficacy? Int J Obes 27:147–161

    Article  CAS  Google Scholar 

  38. Krysko O, Holtappels G, Zhang N et al (2011) Alternatively activated macrophages and impaired phagocytosis of S. aureus in chronic rhinosinusitis. Allergy Eur J Allergy Clin Immunol 66:396–403. https://doi.org/10.1111/j.1398-9995.2010.02498.x

    Article  CAS  Google Scholar 

  39. Varin A, Mukhopadhyay S, Herbein G, Gordon S (2010) Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115:353–362. https://doi.org/10.1182/blood-2009-08-236711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pérez AR, Tamae-Kakazu M, Pascutti MF et al (2005) Deficient control of Trypanosoma cruzi infection in C57BL/6 mice is related to a delayed specific IgG response and increased macrophage production of pro-inflammatory cytokines. Life Sci 77:1945–1959. https://doi.org/10.1016/j.lfs.2005.01.025

    Article  CAS  PubMed  Google Scholar 

  41. Zhang HH, Halbleib M, Ahmad F et al (2002) Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 51:2929–2935. https://doi.org/10.2337/diabetes.51.10.2929

    Article  CAS  PubMed  Google Scholar 

  42. Pérez AR, Roggero E, Nicora A et al (2007) Thymus atrophy during Trypanosoma cruzi infection is caused by an immuno-endocrine imbalance. Brain Behav Immun 21:890–900. https://doi.org/10.1016/j.bbi.2007.02.004

    Article  CAS  PubMed  Google Scholar 

  43. Doerrler W, Feingold KR, Grunfeld C (1994) Cytokines induce catabolic effects in cultured adipocytes by multiple mechanisms. Cytokine 6:478–484. https://doi.org/10.1016/1043-4666(94)90074-4

    Article  CAS  PubMed  Google Scholar 

  44. Feingold KR (1992) Stimulation of lipolysis in cultured fat cells by tumor necrosis factor, interleukin-1, and the interferons is blocked by inhibition of prostaglandin synthesis. Endocrinology 130:10–16. https://doi.org/10.1210/en.130.1.10

    Article  CAS  PubMed  Google Scholar 

  45. Ji C, Chen X, Gao C et al (2011) IL-6 induces lipolysis and mitochondrial dysfunction, but does not affect insulin-mediated glucose transport in 3T3-L1 adipocytes. J Bioenerg Biomembr 43:367–375. https://doi.org/10.1007/s10863-011-9361-8

    Article  CAS  PubMed  Google Scholar 

  46. Roggero E, Pérez AR, Bottasso OA et al (2009) Neuroendocrine-immunology of experimental Chagas’ disease. Ann N Y Acad Sci 1153:264–271

    Article  CAS  PubMed  Google Scholar 

  47. Roggero E, Perez AR, Pollachini N et al (2016) The sympathetic nervous system affects the susceptibility and course of Trypanosoma cruzi infection. Brain Behav Immun 58:228–236. https://doi.org/10.1016/j.bbi.2016.07.163

    Article  CAS  PubMed  Google Scholar 

  48. Duncan RE, Ahmadian M, Jaworski K et al (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101. https://doi.org/10.1146/annurev.nutr.27.061406.093734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ruan H, Hacohen N, Golub TR et al (2002) Tumor necrosis factor-α suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-κB activation by TNFis obligatory. Diabetes 51:1319–1336. https://doi.org/10.2337/diabetes.51.5.1319

    Article  CAS  PubMed  Google Scholar 

  50. Jin D, Sun J, Huang J et al (2014) TNF-α reduces g0s2 expression and stimulates lipolysis through PPAR-γ inhibition in 3T3-L1 adipocytes. Cytokine 69:196–205. https://doi.org/10.1016/j.cyto.2014.06.005

    Article  CAS  PubMed  Google Scholar 

  51. Kim JY, Tillison K, Lee J-H et al (2006) The adipose tissue triglyceride lipase ATGL/PNPLA2 is downregulated by insulin and TNFin 3T3-L1 adipocytes and is a target for transactivation by PPARγ. Am J Physiol Metab 291:E115–E127. https://doi.org/10.1152/ajpendo.00317.2005

    Article  CAS  Google Scholar 

  52. Kaufmann RL, Matson CF, Rowberg AH, Beisel WR (1976) Defective lipid disposal mechanisms during bacterial infection in rhesus monkeys. Metabolism 25:615–624. https://doi.org/10.1016/0026-0495(76)90058-5

    Article  CAS  PubMed  Google Scholar 

  53. Kaufmann RL, Matson CF, Beisel WR (1976) Hypertriglyceridemia produced by endotoxin: role of impaired triglyceride disposal mechanisms. J Infect Dis 133:548–555. https://doi.org/10.1093/infdis/133.5.548

    Article  CAS  PubMed  Google Scholar 

  54. Feingold KR, Staprans I, Memon R et al (1992) Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high doses inhibit clearance. J Lipid Res 33:1765–1776

    CAS  PubMed  Google Scholar 

  55. Lanza-jacoby S, Lansey SC, Cleary MP, Rosato FE (1982) Alterations in lipogenic enzymes and lipoprotein lipase activity during gram-negative sepsis in the rat. Arch Surg 117:144–147

    Article  CAS  PubMed  Google Scholar 

  56. Berg M, Fraker DL, Alexander HR (1994) Characterization of differentiation factor/leukaemia inhibitory factor effect of lipoprotein lipase activity and mRNA in 3T3-L1 adipocytes. Cytokine 6:425–432. https://doi.org/10.1016/1043-4666(94)90067-1

    Article  CAS  PubMed  Google Scholar 

  57. Li H, Chen X, Guan L et al (2013) MiRNA-181a regulates adipogenesis by targeting tumor necrosis factor-α (TNF-α) in the porcine model. PLoS One 8(10):e71568. https://doi.org/10.1371/journal.pone.0071568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Greenberg a S, Nordan RP, McIntosh J et al (1992) Interleukin 6 reduces lipoprotein lipase activity in adipose tissue of mice in vivo and in 3T3-L1 adipocytes: a possible role for interleukin 6 in cancer cachexia. Cancer Res 52:4113–4116

    PubMed  Google Scholar 

  59. Lagathu C, Yvan-Charvet L, Bastard JP et al (2006) Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia 49:2162–2173. https://doi.org/10.1007/s00125-006-0335-z

    Article  CAS  PubMed  Google Scholar 

  60. Oliveira A-C, Peixoto JR, de Arruda LB et al (2004) Expression of functional TLR4 confers proinflammatory responsiveness to Trypanosoma cruzi glycoinositolphospholipids and higher resistance to infection with T. cruzi. J Immunol 173:5688–5696. https://doi.org/10.4049/jimmunol.173.9.5688

    Article  CAS  PubMed  Google Scholar 

  61. Bafica A, Santiago HC, Goldszmid R et al (2006) Cutting edge: TLR9 and TLR2 signaling together account for MyD88-dependent control of parasitemia in Trypanosoma cruzi Infection. J Immunol 177:3515–3519. https://doi.org/10.4049/jimmunol.177.6.3515

    Article  CAS  PubMed  Google Scholar 

  62. Schaffler A, Scholmerich J (2010) Innate immunity and adipose tissue biology. Trends Immunol 31:228–235

    Article  CAS  PubMed  Google Scholar 

  63. Ajuwon KM, Banz W, Winters TA (2009) Stimulation with peptidoglycan induces interleukin 6 and TLR2 expression and a concomitant downregulation of expression of adiponectin receptors 1 and 2 in 3T3-L1 adipocytes. J Inflamm 6:8. https://doi.org/10.1186/1476-9255-6-8

    Article  Google Scholar 

  64. Shi H, Kokoeva MV, Inouye K et al (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Investig 116:3015–3025. https://doi.org/10.1172/JCI28898.TLRs

    Article  CAS  PubMed  Google Scholar 

  65. Kopp A, Buechler C, Neumeier M et al (2009) Innate immunity and adipocyte function: ligand-specific activation of multiple toll-like receptors modulates cytokine, adipokine, and chemokine secretion in adipocytes. Obesity 17:648–656. https://doi.org/10.1038/oby.2008.607

    Article  CAS  PubMed  Google Scholar 

  66. Schäffler A, Schölmerich J, Salzberger B (2007) Adipose tissue as an immunological organ: toll-like receptors, C1q/TNFs and CTRPs. Trends Immunol 28:393–399

    Article  CAS  PubMed  Google Scholar 

  67. Nagajyothi F, Desruisseaux MS, Thiruvur N et al (2008) Trypanosoma cruzi Infection of cultured adipocytes results in an inflammatory phenotype. Obesity 16:1992–1997. https://doi.org/10.1038/oby.2008.331

    Article  CAS  PubMed  Google Scholar 

  68. Hammarstedt A, Andersson CX, Rotter Sopasakis V, Smith U (2005) The effect of PPARgamma ligands on the adipose tissue in insulin resistance. Prostaglandins Leukot Essent Fatty Acids 73:65–75. https://doi.org/10.1016/j.plefa.2005.04.008

    Article  CAS  PubMed  Google Scholar 

  69. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH et al (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120. https://doi.org/10.1038/nature05894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Piccio L, Cantoni C, Henderson JG et al (2013) Lack of adiponectin leads to increased lymphocyte activation and increased disease severity in a mouse model of multiple sclerosis. Eur J Immunol 43:2089–2100. https://doi.org/10.1002/eji.201242836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guo Q, Xu L, Liu J et al (2017) Fibroblast growth factor 21 reverses suppression of adiponectin expression via inhibiting endoplasmic reticulum stress in adipose tissue of obese mice. Exp Biol Med 242:441–447. https://doi.org/10.1177/1535370216677354

    Article  CAS  Google Scholar 

  72. Martin H (2010) Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res Fundam Mol Mech Mutagen 690:57–63

    Article  CAS  Google Scholar 

  73. Rodrigues WF, Miguel CB, Chica JEL, Napimoga MH (2010) 15d-PGJ2 modulates acute immune responses to Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 105:137–143

    Article  CAS  PubMed  Google Scholar 

  74. Hovsepian E, Mirkin GA, Penas F et al (2011) Modulation of inflammatory response and parasitism by 15-deoxy-12,14 prostaglandin J2 in Trypanosoma cruzi-infected cardiomyocytes. Int J Parasitol 41:553–562. https://doi.org/10.1016/j.ijpara.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  75. Penas F, Mirkin GA, Hovsepian E et al (2013) PPARγ ligand treatment inhibits cardiac inflammatory mediators induced by infection with different lethality strains of Trypanosoma cruzi. Biochim Biophys Acta Mol Basis Dis 1832:239–248. https://doi.org/10.1016/j.bbadis.2012.08.007

    Article  CAS  Google Scholar 

  76. Liu LF, Purushotham A, Wendel A et al (2009) Regulation of adipose triglyceride lipase by rosiglitazone. Diabetes Obes Metab 11:131–142. https://doi.org/10.1111/j.1463-1326.2008.00916.x

    Article  CAS  PubMed  Google Scholar 

  77. Festuccia WT, Blanchard P-G, Turcotte V et al (2009) Depot-specific effects of the PPARgamma agonist rosiglitazone on adipose tissue glucose uptake and metabolism. J Lipid Res 50:1185–1194. https://doi.org/10.1194/jlr.M800620-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Watkins SM, Reifsnyder PR, Pan H et al (2002) Lipid metabolome-wide effects of the PPARγ agonist rosiglitazone. J Lipid Res 43:1809–1817. https://doi.org/10.1194/jlr.M200169-JLR200

    Article  CAS  PubMed  Google Scholar 

  79. Martin G, Schoonjans K, Staels B, Auwerx J (1998) Pparγ activators improve glucose homeostasis by stimulating fatty acid uptake in the adipocytes. Atherosclerosis 137(Suppl):S75–S80

    Article  CAS  PubMed  Google Scholar 

  80. Kersten S (2001) Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep 2:282–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ARP, GPP, JT, LD, OAB and SRV are members of The National Council Research (CONICET). FBG thanks CONICET for a fellowship. JM thanks CIN (National Interuniversity Council) for a fellowship. This work was supported by grants from the Secretary of Sciences and Technology of National University of Rosario (SCYTUNR, 1MED-348 and 1MED-372), National Agency for Scientific and Technological Promotion (ANPCYT, PICT 2013-1892) and PIP-CONICET 0614. The authors thank Wiener Lab. Foundation for their help in supplying some laboratory reagents. We thank Farré Cecilia, Esdras da Silva Oliveira Barbosa and Cabral Nicolás by their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florencia B. González.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The latest National Institute of Health guide for the care and use of laboratory was followed. The study was approved by the Institutional Animal Care and Use Committee of the School of Medicine of National University of Rosario by resolution no. 4977/2013.

Additional information

Edited by: A. Descoteaux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 132 KB)

Supplementary material 2 (PDF 170 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González, F.B., Villar, S.R., Toneatto, J. et al. Immune response triggered by Trypanosoma cruzi infection strikes adipose tissue homeostasis altering lipid storage, enzyme profile and adipokine expression. Med Microbiol Immunol 208, 651–666 (2019). https://doi.org/10.1007/s00430-018-0572-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-018-0572-z

Keywords

Navigation