Skip to main content

Advertisement

Log in

An endocytic YXXΦ (YRRF) cargo sorting motif in the cytoplasmic tail of murine cytomegalovirus AP2 ‘adapter adapter’ protein m04/gp34 antagonizes virus evasion of natural killer cells

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Viruses have evolved proteins that bind immunologically relevant cargo molecules at the cell surface for their downmodulation by internalization. Via a tyrosine-based sorting motif YXXΦ in their cytoplasmic tails, they link the bound cargo to the cellular adapter protein-2 (AP2), thereby sorting it into clathrin-triskelion-coated pits for accelerated endocytosis. Downmodulation of CD4 molecules by lentiviral protein NEF represents the most prominent example. Based on connecting cargo to cellular adapter molecules, such specialized viral proteins have been referred to as ‘connectors’ or ‘adapter adapters.’ Murine cytomegalovirus glycoprotein m04/gp34 binds stably to MHC class-I (MHC-I) molecules and suspiciously carries a canonical YXXΦ endocytosis motif YRRF in its cytoplasmic tail. Disconnection from AP2 by motif mutation ARRF should retain m04-MHC-I complexes at the cell surface and result in an enhanced silencing of natural killer (NK) cells, which recognize them via inhibitory receptors. We have tested this prediction with a recombinant virus in which the AP2 motif is selectively destroyed by point mutation Y248A, and compared this with the deletion of the complete protein in a Δm04 mutant. Phenotypes were antithetical in that loss of AP2-binding enhanced NK cell silencing, whereas absence of m04-MHC-I released them from silencing. We thus conclude that AP2-binding antagonizes NK cell silencing by enhancing endocytosis of the inhibitory ligand m04-MHC-I. Based on a screen for tyrosine-based endocytic motifs in cytoplasmic tail sequences, we propose here the new hypothesis that most proteins of the m02m16 gene family serve as ‘adapter adapters,’ each selecting its specific cell surface cargo for clathrin-assisted internalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844

    Article  CAS  PubMed  Google Scholar 

  2. Doom C, Hill AB (2008) MHC class I immune evasion in MCMV infection. Med Microbiol Immunol 197:191–204

    Article  CAS  PubMed  Google Scholar 

  3. Lemmermann NA, Böhm V, Holtappels R, Reddehase MJ (2011) In vivo impact of cytomegalovirus evasion of CD8 T-cell immunity: facts and thoughts based on murine models. Virus Res 157:161–174

    Article  CAS  PubMed  Google Scholar 

  4. Lemmermann NA, Fink A, Podlech J, Ebert S, Wilhelmi V, Böhm V, Holtappels R, Reddehase MJ (2012) Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions. Med Microbiol Immunol 201:497–512

    Article  CAS  PubMed  Google Scholar 

  5. Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9:503–513

    Article  CAS  PubMed  Google Scholar 

  6. Del Val M, Hengel H, Hacker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 172:729–738

    Article  Google Scholar 

  7. Ziegler H, Thale R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6:57–66

    Article  CAS  PubMed  Google Scholar 

  8. Ziegler H, Muranyi W, Burgert HG, Kremmer E, Koszinowski UH (2000) The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. EMBO J 19:870–881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH (1999) The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 190:1285–1296

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Holtappels R, Podlech J, Pahl-Seibert M-F, Jülch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Lemmermann NA, Gergely K, Böhm V, Deegen P, Däubner T, Reddehase MJ (2010) Immune evasion proteins of murine cytomegalovirus preferentially affect cell surface display of recently generated peptide presentation complexes. J Virol 84:1221–1236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lodoen M, Ogasawara K, Hamerman J, Arase H, Houchins J, Mocarski E, Lanier L (2003) NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J Exp Med 197:1245–1253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Zhi L, Mans J, Paskow MJ, Brown PH, Schuck P, Jonjic S, Natarajan K, Margulies DH (2010) Direct interaction of the mouse cytomegalovirus m152/gp40 immunoevasin with RAE-1 isoforms. Biochemistry 49:2443–2453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Krmpotic A, Busch DH, Bubic I, Gebhardt F, Hengel H, Hasan M, Scalzo AA, Koszinowski UH, Jonjic S (2002) MCMV glycoprotein gp40 confers virus resistance to CD8+ T cells and NK cells in vivo. Nat Immunol 3:529–535

    Article  CAS  PubMed  Google Scholar 

  15. Wang R, Natarajan K, Revilleza M, Boyd L, Zhi L, Zhao H, Robinson H, Margulies D (2012) Structural basis of mouse cytomegalovirus m152/gp40 interaction with RAE1γ reveals a paradigm for MHC/MHC interaction in immune evasion. Proc Natl Acad Sci USA 109:E3578–E3587

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Fink A, Renzaho A, Reddehase M, Lemmermann NAW (2013) The p36 isoform of murine cytomegalovirus m152 protein suffices for mediating innate and adaptive immune evasion. Viruses 5:3171–3191

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lenac T, Arapovic J, Traven L, Krmpotic A, Jonjic S (2008) Murine cytomegalovirus regulation of NKG2D ligands. Med Microbiol Immunol 197:159–166

    Article  PubMed  Google Scholar 

  18. Rawlinson W, Farrell H, Barrell B (1996) Analysis of the complete DNA sequence of murine cytomegalovirus. J Virol 70:8833–8849

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Kleijnen MF, Huppa JB, Lucin P, Mukherjee S, Farrell H, Campbell AE, Koszinowski UH, Hill AB, Ploegh HL (1997) A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J 16:685–694

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Reusch U, Muranyi W, Lucin P, Burgert HG, Hengel H, Koszinowski UH (1999) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 18:1081–1091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Reusch U, Bernhard O, Koszinowski UH, Schu P (2002) AP-1A and AP-3A lysosomal sorting functions. Traffic 3:752–761

    Article  CAS  PubMed  Google Scholar 

  22. Oldridge J, Marsh M (1998) Nef-an adaptor adaptor? Trends Cell Biol 8:302–305

    Article  CAS  PubMed  Google Scholar 

  23. Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fink A, Lemmermann NA, Gillert-Marien D, Thomas D, Freitag K, Böhm V, Wilhelmi V, Reifenberg K, Reddehase MJ, Holtappels R (2012) Antigen presentation under the influence of “immune evasion” proteins and its modulation by interferon-gamma: implications for immunotherapy of cytomegalovirus infection with antiviral CD8 T cells. Med Microbiol Immunol 201:513–525

    Article  CAS  PubMed  Google Scholar 

  25. Babic M, Pyzik M, Zafirova B, Mitrovic M, Butorac V, Lanier LL, Krmpotic A, Vidal S, Jonjic S (2010) Cytomegalovirus immunoevasin reveals the physiological role of “missing self” recognition in natural killer cell dependent virus control in vivo. J Exp Med 207:2663–2673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Kielczewska A, Pyzik M, Sun T, Krmpotic A, Lodoen MB, Munks MW, Babic M, Hill AB, Koszinowski UH, Jonjic S, Lanier LL, Vidal SM (2009) Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J Exp Med 206:515–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Vidal S, Krmpotic A, Pyzik M, Jonjic S (2013) Innate immunity to cytomegalovirus in the murine model. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention, vol II, chap 9. Caister Academic Press, Norfolk, pp 191–213

  28. Lu X, Kavanagh DG, Hill AB (2006) Cellular and molecular requirements for association of the murine cytomegalovirus protein m4/gp34 with major histocompatibility complex class I molecules. J Virol 80:6048–6055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Berry R, Vivian JP, Deuss FA, Balaji GR, Saunders PM, Lin J, Littler DR, Brooks AG, Rossjohn J (2014) The structure of the cytomegalovirus-encoded m04 glycoprotein, a prototypical member of the m02 family of immunoevasins. J Biol Chem 289:23753–23763

    Article  CAS  PubMed  Google Scholar 

  30. Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Pinto A, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234

    Article  CAS  PubMed  Google Scholar 

  32. Holtappels R, Thomas D, Podlech J, Steffens HP, Geginat G, Reddehase MJ (2000) The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 74:1871–1884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Corbett AJ, Forbes CA, Moro D, Scalzo AA (2007) Extensive sequence variation exists among isolates of murine cytomegalovirus within members of the m02 family of genes. J Gen Virol 88:758–769

    Article  CAS  PubMed  Google Scholar 

  34. Bonifacino JS, Traub LM (2003) Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem 72:395–447

    Article  CAS  PubMed  Google Scholar 

  35. Ohno H, Stewart J, Fournier MC, Bosshart H, Rhee I, Miyatake S, Saito T, Gallusser A, Kirchhausen T, Bonifacino JS (1995) Interaction of tyrosine-based sorting signals with clathrin-associated proteins. Science 269:1872–1875

    Article  CAS  PubMed  Google Scholar 

  36. Traub LM (2003) Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. J Cell Biol 163:203–208

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Reider A, Wendland B (2011) Endocytic adaptors-social networking at the plasma membrane. J Cell Sci 124:1613–1622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Lucin P, Mahmutefendic H, Blagojevic Zagorac G, Ilic Tomas M (2015) Cytomegalovirus immune evasion by perturbation of endosomal trafficking. Cell Mol Immunol 12:154–169

    Article  CAS  PubMed  Google Scholar 

  39. Wagner M, Jonjic S, Koszinowski UH, Messerle M (1999) Systematic excision of vector sequences from the BAC-cloned herpesvirus genome during virus reconstitution. J Virol 73:7056–7060

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Kurz S, Steffens HP, Mayer A, Harris JR, Reddehase MJ (1997) Latency versus persistence or intermittent recurrences: evidence for a latent state of murine cytomegalovirus in the lungs. J Virol 71:2980–2987

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Podlech J, Holtappels R, Grzimek NA, Reddehase MJ (2002) Animal models: murine cytomegalovirus. In: Kaufmann SHE, Kabelitz D (eds) Methods in microbiology: immunology of infection. Academic Press, London, pp 493–525

    Chapter  Google Scholar 

  42. Tischer B, von Einem J, Kaufer B, Osterrieder N (2006) Two-step Red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40:191–197

    Article  CAS  PubMed  Google Scholar 

  43. Wagner M, Ruzsics Z, Koszinowski UH (2002) Herpesvirus genetics has come of age. Trends Microbiol 10:318–324

    Article  CAS  PubMed  Google Scholar 

  44. Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. In: Kaufmann SHE, Kabelitz D (eds) Methods in microbiology: immunology of infection. Academic Press, London, pp 369–420

    Chapter  Google Scholar 

  45. Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL (2002) Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296:11323–11326

    Article  Google Scholar 

  46. Holtappels R, Simon C, Munks MW, Thomas D, Deegen P, Kühnapfel B, Däubner T, Emde S, Podlech J, Grzimek NA, Oehrlein-Karpi SA, Hill AB, Reddehase MJ (2008) Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol 82:5781–5796

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Däubner T, Fink A, Seitz A, Tenzer S, Müller J, Strand D, Seckert CK, Janssen C, Renzaho A, Grzimek NK, Simon CO, Ebert S, Reddehase MJ, Oehrlein-Karpi SA, Lemmermann NA (2010) A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum. J Gen Virol 91:1524–1534

    Article  PubMed  Google Scholar 

  48. Wilhelmi V, Simon CO, Podlech J, Böhm V, Däubner T, Emde S, Strand D, Renzaho A, Lemmermann NA, Seckert CK, Reddehase MJ, Grzimek NK (2008) Transactivation of cellular genes involved in nucleotide metabolism by the regulatory IE1 protein of murine cytomegalovirus is not critical for viral replicative fitness in quiescent cells and host tissues. J Virol 82:9900–9916

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Kropp KA, Simon CO, Fink A, Renzaho A, Kühnapfel B, Podlech J, Reddehase MJ, Grzimek NK (2009) Synergism between the components of the bipartite major immediate-early transcriptional enhancer of murine cytomegalovirus does not accelerate virus replication in cell culture and host tissues. J Gen Virol 90:2395–2401

    Article  CAS  PubMed  Google Scholar 

  50. Lemmermann NA, Krmpotic A, Podlech J, Brizic I, Prager A, Adler H, Karbach A, Wu Y, Jonjic S, Reddehase MJ, Adler B (2015) Non-redundant and redundant roles of cytomegalovirus gH/gL complexes in host organ entry and intra-tissue spread. PLoS Pathog 11:e1004640

    Article  PubMed  Google Scholar 

  51. Podlech J, Reddehase MJ, Adler B, Lemmermann NA (2015) Principles for studying in vivo attenuation of virus mutants: defining the role of the cytomegalovirus gH/gL/gO complex as a paradigm. Med Microbiol Immunol [Epub ahead of print]

  52. Dell’Angelica EC, Mullins C, Bonifacino JS (1999) AP-4, a novel protein complex related to clathrin adaptors. J Biol Chem 274:7278–7285

    Article  PubMed  Google Scholar 

  53. Hirst J, Bright NA, Rous B, Robinson MS (1999) Characterization of a fourth adaptor-related protein complex. Mol Biol Cell 10:2787–2802

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Aguilar RC, Boehm M, Gorshkova I, Crouch RJ, Tomita K, Saito T, Ohno H, Bonifacino JS (2001) Signal-binding specificity of the mu4 subunit of the adapter protein complex AP-4. J Biol Chem 276:13145–13152

    Article  CAS  PubMed  Google Scholar 

  55. Kavanagh DG, Koszinowski UH, Hill AB (2001) The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. J Immunol 167:3894–3902

    Article  CAS  PubMed  Google Scholar 

  56. Ebert S, Becker M, Lemmermann NA, Büttner JK, Michel A, Taube C, Podlech J, Böhm V, Freitag K, Thomas D, Holtappels R, Reddehase MJ, Stassen M (2014) Mast cells expedite control of pulmonary murine cytomegalovirus infection by enhancing the recruitment of protective CD8 T cells to the lungs. PLoS Pathog 10:e1004100

    Article  PubMed Central  PubMed  Google Scholar 

  57. Owen DJ, Evans PR (1998) A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282:1327–1332

    Article  CAS  PubMed  Google Scholar 

  58. Tirabassi RS, Enquist LW (1999) Mutation of the YXXL endocytosis motif in the cytoplasmic tail of pseudorabies virus gE. J Virol 73:2717–2728

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Royle SJ, Qureshi OS, Bobanović LK, Evans PR, Owen DJ, Murrell-Lagnado RD (2005) Non-canonical YXXGPhi endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors. J Cell Sci 118:3073–3080

    Article  CAS  PubMed  Google Scholar 

  60. Ebeling A, Keil GM, Knust E, Koszinowski UH (1983) Molecular cloning and physical mapping of murine cytomegalovirus DNA. J Virol 47:421–433

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft, SFB490, individual project E4 ‘antigen presentation under the influence of murine cytomegalovirus immune evasion proteins.’ NAWL received intramural funding from the young investigator program MAIFOR of the University Medical Center Mainz.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

All procedures performed in studies involving animals were approved by the ethics committee of the Landesuntersuchungsamt Rheinland-Pfalz, Permission No. 177-07/G09-1-004 in accordance with German Federal Law §8 Abs. 1 TierSchG (animal protection law). BALB/c mice were bred and housed under specified pathogen-free conditions at the Central Laboratory Animal Facility (CLAF) at the University Medical Center of the Johannes Gutenberg-University, Mainz, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annette Fink.

Additional information

This article is part of the Special Issue on Cytomegalovirus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fink, A., Blaum, F., Babic Cac, M. et al. An endocytic YXXΦ (YRRF) cargo sorting motif in the cytoplasmic tail of murine cytomegalovirus AP2 ‘adapter adapter’ protein m04/gp34 antagonizes virus evasion of natural killer cells. Med Microbiol Immunol 204, 383–394 (2015). https://doi.org/10.1007/s00430-015-0414-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-015-0414-1

Keywords

Navigation