Altered cerebrovascular reactivity due to respiratory rate and breath holding: a BOLD-fMRI study on healthy adults

Abstract

Cerebrovascular reactivity (CVR) is of great significance for the treatment and prevention of cerebrovascular diseases. CVR can be mapped using the blood oxygenation level-dependent (BOLD) signal of fMRI. Breath holding (BH) is a reliable method to produce the desired increase in arterial CO2, while its application in clinical research is limited due to subject’s compliance and variability. BH task with variable respiratory rates could allow more flexibility in clinical populations. In this study, 50 healthy volunteers were scanned for end-inspiration BH tasks with three different respiration rates. For the three respiratory rates BH tasks, the CVR was estimated based on the BOLD signal and general linear model (GLM) separately. Specifically, the extra time delay was considered for the hemodynamic response function, and the optimal delay was estimated for each voxel. To measure CVR in grey matter, BOLD signals of end-inspiration BH were used as regressors in general linear models to quantify their impact on CVR. This was performed for regions and voxels. Systematic differences were observed between the three end-inspiratory breathing rates. The greatest increase in activation intensity was found in fast breathing followed by self-paced and slow breathing. We conclude that the BH task of variable respiratory rates allows for CVR measurement, making breath-holding challenges more flexible and appropriate for routine practice.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abbott DF, Opdam HI, Briellmann RS, Jackson GD (2005) Brief breath holding may confound functional magnetic resonance imaging studies. Hum Brain Mapp 24(4):284–290. https://doi.org/10.1002/hbm.20086

    Article  PubMed  PubMed Central  Google Scholar 

  2. Birn RM, Diamond JB, Smith MA, Bandettini PA (2006) Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. Neuroimage 31(4):1536–1548. https://doi.org/10.1016/j.neuroimage.2006.02.048

    Article  PubMed  Google Scholar 

  3. Birn RM, Smith MA, Jones TB, Bandettini PA (2008) The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. Neuroimage 40(2):644–654. https://doi.org/10.1016/j.neuroimage.2007.11.059

    Article  PubMed  Google Scholar 

  4. Bright MG, Murphy K (2013) Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance. Neuroimage 83:559–568. https://doi.org/10.1016/j.neuroimage.2013.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  5. Buunk G, van der Hoeven JG, Meinders AE (1997) Cerebrovascular reactivity in comatose patients resuscitated from a cardiac arrest. Stroke 28(8):1569–1573. https://doi.org/10.1161/01.str.28.8.1569

    CAS  Article  PubMed  Google Scholar 

  6. Calhoun VD, Wager TD, Krishnan A, Rosch KS, Seymour KE, Nebel MB, Kiehl K (2017) The impact of T1 versus EPI spatial normalization templates for fMRI data analyses. Hum Brain Mapp 38(11):5331–5342. https://doi.org/10.1002/hbm.23737

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chang C, Thomason ME, Glover GH (2008) Mapping and correction of vascular hemodynamic latency in the BOLD signal. Neuroimage 43(1):90–102. https://doi.org/10.1016/j.neuroimage.2008.06.030

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chang TY, Liu HL, Lee TH, Kuan WC, Chang CH, Wu HC, Chang YJ (2009) Change in cerebral perfusion after carotid angioplasty with stenting is related to cerebral vasoreactivity: a study using dynamic susceptibility-weighted contrast-enhanced MR imaging and functional MR imaging with a breath-holding paradigm. AJNR Am J Neuroradiol 30(7):1330–1336. https://doi.org/10.3174/ajnr.A1589

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cohen ER, Ugurbil K, Kim SG (2002) Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J Cereb Blood Flow Metab 22(9):1042–1053. https://doi.org/10.1097/00004647-200209000-00002

    CAS  Article  PubMed  Google Scholar 

  10. Derdeyn CP, Videen TO, Yundt KD, Fritsch SM, Carpenter DA, Grubb RL, Powers WJ (2002) Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited. Brain 125:595–607. https://doi.org/10.1093/brain/awf047

    Article  PubMed  Google Scholar 

  11. Di X, Kannurpatti SS, Rypma B, Biswal BB (2013) Calibrating BOLD fMRI activations with neurovascular and anatomical constraints. Cereb Cortex 23(2):255–263. https://doi.org/10.1093/cercor/bhs001

    Article  PubMed  Google Scholar 

  12. Friedman L, Turner JA, Stern H, Mathalon DH, Trondsen LC, Potkin SG (2008) Chronic smoking and the BOLD response to a visual activation task and a breath hold task in patients with schizophrenia and healthy controls. Neuroimage 40(3):1181–1194. https://doi.org/10.1016/j.neuroimage.2007.12.040

    Article  PubMed  PubMed Central  Google Scholar 

  13. Glodzik L, Randall C, Rusinek H, de Leon MJ (2013) Cerebrovascular reactivity to carbon dioxide in Alzheimer’s disease. J Alzheimers Dis 35(3):427–440. https://doi.org/10.3233/JAD-122011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Hou X, Liu P, Li Y, Jiang D, De Vis JB, Lin Z, Lu H (2020) The association between BOLD-based cerebrovascular reactivity (CVR) and end-tidal CO2 in healthy subjects. Neuroimage 207:116365. https://doi.org/10.1016/j.neuroimage.2019.116365

    CAS  Article  PubMed  Google Scholar 

  15. Iadecola C, Davisson RL (2008) Hypertension and cerebrovascular dysfunction. Cell Metab 7(6):476–484. https://doi.org/10.1016/j.cmet.2008.03.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Kannurpatti SS, Biswal BB, Hudetz AG (2002) Differential fMRI-BOLD signal response to apnea in humans and anesthetized rats. Magn Reson Med 47(5):864–870. https://doi.org/10.1002/mrm.10131

    Article  PubMed  Google Scholar 

  17. Kannurpatti SS, Rypma B, Biswal BB (2012) Prediction of task-related BOLD fMRI with amplitude signatures of resting-state fMRI. Front Syst Neurosci 6:7. https://doi.org/10.3389/fnsys.2012.00007

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kastrup A, Li TQ, Takahashi A, Glover GH, Moseley ME (1998) Functional magnetic resonance imaging of regional cerebral blood oxygenation changes during breath holding. Stroke 29(12):2641–2645. https://doi.org/10.1161/01.str.29.12.2641

    CAS  Article  PubMed  Google Scholar 

  19. Kastrup A, Kruger G, Neumann-Haefelin T, Moseley ME (2001) Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of CO(2) and breath holding. Magn Reson Imaging 19(1):13–20. https://doi.org/10.1016/s0730-725x(01)00227-2

    CAS  Article  PubMed  Google Scholar 

  20. Leoni RF, Paiva FF, Henning EC, Nascimento GC, Tannus A, de Araujo DB, Silva AC (2011) Magnetic resonance imaging quantification of regional cerebral blood flow and cerebrovascular reactivity to carbon dioxide in normotensive and hypertensive rats. Neuroimage 58(1):75–81. https://doi.org/10.1016/j.neuroimage.2011.06.030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Liu P, De Vis JB, Lu H (2019) Cerebrovascular reactivity (CVR) MRI with CO2 challenge: a technical review. Neuroimage 187:104–115. https://doi.org/10.1016/j.neuroimage.2018.03.047

    Article  PubMed  Google Scholar 

  22. Magon S, Basso G, Farace P, Ricciardi GK, Beltramello A, Sbarbati A (2009) Reproducibility of BOLD signal change induced by breath holding. Neuroimage 45(3):702–712. https://doi.org/10.1016/j.neuroimage.2008.12.059

    Article  PubMed  Google Scholar 

  23. Markus H, Cullinane M (2001) Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion. Brain 124(Pt 3):457–467. https://doi.org/10.1093/brain/124.3.457

    CAS  Article  PubMed  Google Scholar 

  24. Scouten A, Schwarzbauer C (2008) Paced respiration with end-expiration technique offers superior BOLD signal repeatability for breath-hold studies. Neuroimage 43(2):250–257. https://doi.org/10.1016/j.neuroimage.2008.03.052

    CAS  Article  PubMed  Google Scholar 

  25. Silvestrini M, Troisi E, Matteis M, Cupini LM, Caltagirone C (1996) Transcranial Doppler assessment of cerebrovascular reactivity in symptomatic and asymptomatic severe carotid stenosis. Stroke 27(11):1970–1973. https://doi.org/10.1161/01.str.27.11.1970

    CAS  Article  PubMed  Google Scholar 

  26. Sousa I, Vilela P, Figueiredo P (2014) Reproducibility of hypocapnic cerebrovascular reactivity measurements using BOLD fMRI in combination with a paced deep breathing task. Neuroimage 98:31–41. https://doi.org/10.1016/j.neuroimage.2014.04.049

    CAS  Article  PubMed  Google Scholar 

  27. Tancredi FB, Hoge RD (2013) Comparison of cerebral vascular reactivity measures obtained using breath-holding and CO2 inhalation. J Cereb Blood Flow Metab 33(7):1066–1074. https://doi.org/10.1038/jcbfm.2013.48

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Thomason ME, Glover GH (2008) Controlled inspiration depth reduces variance in breath-holding-induced BOLD signal. Neuroimage 39(1):206–214. https://doi.org/10.1016/j.neuroimage.2007.08.014

    Article  PubMed  Google Scholar 

  29. Thomason ME, Burrows BE, Gabrieli JD, Glover GH (2005) Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage 25(3):824–837. https://doi.org/10.1016/j.neuroimage.2004.12.026

    Article  PubMed  Google Scholar 

  30. Tong Y, Bergethon PR, Frederick BD (2011) An improved method for mapping cerebrovascular reserve using concurrent fMRI and near-infrared spectroscopy with Regressor Interpolation at Progressive Time Delays (RIPTiDe). Neuroimage 56(4):2047–2057. https://doi.org/10.1016/j.neuroimage.2011.03.071

    Article  PubMed  PubMed Central  Google Scholar 

  31. Webster MW, Makaroun MS, Steed DL, Smith HA, Johnson DW, Yonas H (1995) Compromised cerebral blood flow reactivity is a predictor of stroke in patients with symptomatic carotid artery occlusive disease. J Vasc Surg 21(2):338–344. https://doi.org/10.1016/s0741-5214(95)70274-1

    CAS  Article  PubMed  Google Scholar 

  32. Ziyeh S, Rick J, Reinhard M, Hetzel A, Mader I, Speck O (2005) Blood oxygen level-dependent MRI of cerebral CO2 reactivity in severe carotid stenosis and occlusion. Stroke 36(4):751–756. https://doi.org/10.1161/01.STR.0000157593.03470.3d

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Tom Trifon, Katherine Ji and Donna Chen for comments on this manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) grant numbers 61871420.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hang Yang or Bharat Biswal.

Ethics declarations

Conflict of interest

The authors have declared that there are no conflicts of interest in relation to the subject of this study.

Research involving human and/or animal participants

50 healthy adult volunteers from the University of Electronic Science and Technology of China and the surrounding community participated in the study. All subjects gave informed written consent after the nature of the study and its possible consequences were explained to them. The study and protocols were in accordance with the latest Revision of the Declaration of Helsinki and received full ethical approval from the Institutional Review Board of the University of Electronic Science and Technology of China.

Informed consent

Informed consent was obtained in writing from all individual participants included in the study.

Data and code availability

The data that support the findings of this study will be made available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 530 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Yang, H., Zhang, H. et al. Altered cerebrovascular reactivity due to respiratory rate and breath holding: a BOLD-fMRI study on healthy adults. Brain Struct Funct (2021). https://doi.org/10.1007/s00429-021-02236-5

Download citation

Keywords

  • CVR
  • fMRI-BOLD signal
  • Breath-holding experiments
  • Respiratory rates