Effects of basal forebrain stimulation on the vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex

Abstract

Basal forebrain (BF) cholinergic system is important for attention and modulates sensory processing. We focused on the hindpaw representation in rat primary somatosensory cortex (S1), which receives inputs related to mechanoreceptors identical to those in human glabrous skin. Spike data were recorded from S1 tactile neurons (n = 87) with (ON condition: 0.5-ms bipolar current pulses at 100 Hz; amplitude 50 μA, duration 0.5 s at each trial) and without (OFF condition) electrical stimulation of BF in anesthetized rats. We expected that prior activation of BF would induce changes in the vibrotactile responses of neurons during sinusoidal (5, 40, and 250 Hz) mechanical stimulation of the glabrous skin. The experiment consisted of sequential OFF–ON conditions in two-time blocks separated by 30 min to test possible remaining effects. Average firing rates (AFRs) and vector strengths of spike phases (VS) were analyzed for different neuron types [regular spiking (RS) and fast spiking (FS)] in different cortical layers (III–VI). Immediate effect of BF activation was only significant by increasing synchronization to 5-Hz vibrotactile stimulus within the second block. Regardless of frequency, ON–OFF paired VS differences were significantly higher in the second block compared to the first, more prominent for RS neurons, and in general for neurons in layers III and VI. No such effects could be found on AFRs. The results suggest that cholinergic activation induces some changes in the hindpaw area, enabling relatively higher increases in synchronization to vibrotactile inputs with subsequent BF modulation. In addition, this modulation depends on neuron type and layer, which may be related to detailed projection pattern from BF.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ahissar E, Sosnik R, Haidarliu S (2000) Transformation from temporal to rate coding in a somatosensory thalamocortical pathway. Nature 406:302–306. https://doi.org/10.1038/35018568

    CAS  Article  PubMed  Google Scholar 

  2. Ballinger EC, Ananth M, Talmage DA et al (2016) Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 91:1199–1218. https://doi.org/10.1038/35018568

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Burton H, Sinclair RJ, Hon SG et al (1997) Tactile-spatial and cross-modal attention effects in the second somatosensory and 7b cortical areas of rhesus monkeys. Somatosens Mot Res 14:237–267

    CAS  Article  Google Scholar 

  4. Castro-Alamancos MA (2004) Dynamics of sensory thalamocortical synaptic networks during information processing states. Prog Neurobiol 74:213–247. https://doi.org/10.1016/j.pneurobio.2004.09.002

    Article  PubMed  Google Scholar 

  5. Castro-Alamancos MA, Bezdudnaya T, Deleuze C et al (2002) Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs. J Neurophysiol 87:946–953. https://doi.org/10.1013/jphysiol.2001.013283

    CAS  Article  PubMed  Google Scholar 

  6. Chapin JK (1986) Laminar differences in sizes, shapes, and response profiles of cutaneous receptive fields in the rat SI cortex. Exp Brain Res 62:549–559. https://doi.org/10.1007/BF00236033

    CAS  Article  PubMed  Google Scholar 

  7. Chapin JK, Lin CS (1984) Mapping the body representation in the SI cortex of anesthetized and awake rats. J Comp Neurol 229:199–213. https://doi.org/10.1002/cne.902290206

    CAS  Article  PubMed  Google Scholar 

  8. Chapin JK, Sadeq M, Guise JL (1987) Corticocortical connections within the primary somatosensory cortex of the rat. J Comp Neurol 263:326–346. https://doi.org/10.1002/cne.902630303

    CAS  Article  PubMed  Google Scholar 

  9. Chaves-Coira I, Martín-Cortecero J, Nuñez A, Rodrigo-Angulo ML (2018a) Basal forebrain nuclei display distinct projecting pathways and functional circuits to sensory primary and prefrontal cortices in the rat. Front Neuroanat 12:69. https://doi.org/10.3389/fnana.2018.00069

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Chaves-Coira I, Rodrigo-Angulo ML, Nuñez A (2018b) Bilateral pathways from the basal forebrain to sensory cortices may contribute to synchronous sensory processing. Front Neuroanat 12:5. https://doi.org/10.3389/fnana.2018.00005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Cohen JC, Makous JC, Bolanowski SJ (1999) Under which conditions do the skin and probe decouple during sinusoidal vibrations? Exp Brain Res 129:211–217

    CAS  Article  Google Scholar 

  12. Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci 13:99–104

    CAS  Article  Google Scholar 

  13. Constantinople CM, Bruno RM (2011) Effects and mechanisms of wakefulness on local cortical networks. Neuron. https://doi.org/10.1016/j.neuron.2011.02.040

    Article  PubMed  PubMed Central  Google Scholar 

  14. De Kock CPJ, Sakmann B (2008) High frequency action potential bursts (≥ 100 Hz) in L2/3 and L5B thick tufted neurons in anaesthetized and awake rat primary somatosensory cortex. J Physiol 586:3353–3364. https://doi.org/10.1113/jphysiol.2008.155580

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. De Kock CPJ, Bruno RM, Spors H, Sakmann B (2007) Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex. J Physiol 581:139–154. https://doi.org/10.1113/jphysiol.2006.124321

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Devecioğlu I, Güçlü B (2013) Asymmetric response properties of rapidly adapting mechanoreceptive fibers in the rat glabrous skin. Somatosens Mot Res 30:16–29. https://doi.org/10.3109/08990220.2012.732128

    Article  PubMed  Google Scholar 

  17. Devecioğlu I, Güçlü B (2015) A novel vibrotactile system for stimulating the glabrous skin of awake freely behaving rats during operant conditioning. J Neurosci Methods 242:41. https://doi.org/10.1016/j.jneumeth.2015.01.004

    Article  PubMed  Google Scholar 

  18. Devecioǧlu I, Güçlü B (2017) Psychophysical correspondence between vibrotactile intensity and intracortical microstimulation for tactile neuroprostheses in rats. J Neural Eng. https://doi.org/10.1088/1741-2552/14/1/016010

    Article  PubMed  Google Scholar 

  19. Donoghue JP, Carroll KL (1987) Cholinergic modulation of sensory responses in rat primary somatic sensory cortex. Brain Res 408:367–371

    CAS  Article  Google Scholar 

  20. Dykes RWW, Lamour Y (1988) An electrophysiological study of single somatosensory neurons in rat granular cortex serving the limbs: a laminar analysis. J Neurophysiol 60:703–724. https://doi.org/10.1038/10131

    CAS  Article  PubMed  Google Scholar 

  21. Everitt BJ, Robbins TW (1997) Central cholinergic systems and cognition. Annu Rev Psychol 48:649–684. https://doi.org/10.1146/annurev.psych.48.1.649

    CAS  Article  Google Scholar 

  22. Fiser J, Chiu C, Weliky M (2004) Small modulation of ongoing cortical dynamics by sensory input during natural vision. Nature 431:573–578. https://doi.org/10.1038/nature02907

    CAS  Article  PubMed  Google Scholar 

  23. Foffani G, Tutunculer B, Moxon KA (2004) Role of spike timing in the forelimb somatosensory cortex of the rat. J Neurosci 24:7266–7271. https://doi.org/10.1523/jneurosci.2523-04.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Fox K (2008) Barrel cortex. Cambridge University Press, Cambridge

    Google Scholar 

  25. Froemke RC, Merzenich MM, Schreiner CE (2007) A synaptic memory trace for cortical receptive field plasticity. Nature 450:425–429. https://doi.org/10.1038/nature06289

    CAS  Article  Google Scholar 

  26. Gabernet L, Jadhav SP, Feldman DE et al (2005) Somatosensory integration controlled by dynamic thalamocortical feed-forward inhibition. Neuron 48:315–327. https://doi.org/10.1016/j.neuron.2005.09.022

    CAS  Article  Google Scholar 

  27. Gil Z, Amitai Y (1996) Adult thalamocortical transmission involves both NMDA and non-NMDA receptors. J Neurophysiol 76:2547–2553. https://doi.org/10.1152/jn.1996.76.4.2547

    CAS  Article  PubMed  Google Scholar 

  28. Goard M, Dan Y (2009) Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci 12:1444–1449. https://doi.org/10.1038/nn.2402

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Goodwin AW, Browning AS, Wheat HE (1995) Representation of curved surfaces in responses of mechanoreceptive afferent fibers innervating the monkey’s fingerpad. J Neurosci 15:798–810

    CAS  Article  Google Scholar 

  30. Grün S, Rotter S (2010) Analysis of parallel spike trains. Springer, New York

    Google Scholar 

  31. Güçlü B (2013) Vibrotactile responses of cortical neurons from hindpaw representation in the rat SI cortex. Society for Neuroscience Abstracts, 39, program no. 72.16

  32. Güçlü B, Bolanowski SJ (2003a) Frequency responses of cat rapidly adapting mechanoreceptive fibers. Somatosens Mot Res 20:249–263

    Article  Google Scholar 

  33. Güçlü B, Bolanowski SJ (2003b) Distribution of the intensity-characteristic parameters of cat rapidly adapting mechanoreceptive fibers. Somatosens Mot Res 20:149–155

    Article  Google Scholar 

  34. Güçlü B, Bolanowski SJ (2004) Tristate Markov model for the firing statistics of rapidly-adapting mechanoreceptive fibers. J Comput Neurosci 17:107–126

    Article  Google Scholar 

  35. Güçlü B, Bolanowski SJ, Pawson L (2003) End-to-end linkage (EEL) clustering algorithm: a study on the distribution of Meissner corpuscles in the skin. J Comput Neurosci 15:19–28. https://doi.org/10.1023/A:1024466617694

    Article  PubMed  Google Scholar 

  36. Güçlü B, Mahoney GK, Pawson LJ et al (2008) Localization of Merkel cells in the monkey skin: an anatomical model. Somatosens Mot Res 25:123–138. https://doi.org/10.1080/08990220802131234

    Article  PubMed  Google Scholar 

  37. Harris JA, Petersen RS, Diamond ME (1999) Distribution of tactile learning and its neural basis. Proc Natl Acad Sci USA 96:7587–7591

    CAS  Article  Google Scholar 

  38. Hasselmo ME, Schnell E, Barkai E (1995) Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J Neurosci 15:5249–5262

    CAS  Article  Google Scholar 

  39. Henderson Z, Lu CB, Janzsó G et al (2010) Distribution and role of Kv3.1b in neurons in the medial septum diagonal band complex. Neuroscience 166:952–969. https://doi.org/10.1016/J.NEUROSCIENCE.2010.01.020

    CAS  Article  PubMed  Google Scholar 

  40. Henny P, Jones BE (2008) Projections from basal forebrain to prefrontal cortex comprise cholinergic, GABAergic and glutamatergic inputs to pyramidal cells or interneurons. Eur J Neurosci 27:654–670. https://doi.org/10.1111/j.1460-9568.2008.06029.x

    Article  PubMed  PubMed Central  Google Scholar 

  41. Herremans AHJ, Hijzen TH, Welborn PFE et al (1996) Effects of infusion of cholinergic drugs into the prefrontal cortex area on delayed matching to position performance in the rat. Brain Res 711:102–111. https://doi.org/10.1016/0006-8993(95)01404-7

    CAS  Article  PubMed  Google Scholar 

  42. Herrero JL, Roberts MJ, Delicato LS et al (2008) Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature 454:1110–1114. https://doi.org/10.1038/nature07141

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Himmelheber AM, Sarter M, Bruno JP (2000) Increases in cortical acetylcholine release during sustained attention performance in rats. Cogn Brain Res 9:313–325. https://doi.org/10.1016/S0926-6410(00)00012-4

    CAS  Article  Google Scholar 

  44. Himmelheber AM, Sarter M, Bruno JP (2001) The effects of manipulations of attentional demand on cortical acetylcholine release. Cogn Brain Res 12:353–370. https://doi.org/10.1016/S0926-6410(01)00064-7

    CAS  Article  Google Scholar 

  45. Hsiao SS, O’Shaughnessy DM, Johnson KO (1993) Effects of selective attention on spatial form processing in monkey primary and secondary somatosensory cortex. J Neurophysiol 70:444–447

    CAS  Article  Google Scholar 

  46. Hur EE, Zaborszky L (2005) Vglut2 afferents to the medial prefrontal and primary somatosensory cortices: a combined retrograde tracing in situ hybridization. J Comp Neurol 483:351–373. https://doi.org/10.1002/cne.20444

    Article  PubMed  Google Scholar 

  47. Hyvärinen J, Poranen A, Jokinen Y (1980) Influence of attentive behavior on neuronal responses to vibration in primary somatosensory cortex of the monkey. J Neurophysiol 43:870–882

    Article  Google Scholar 

  48. Johansson RS, Landstrom U, Lundstrom R (1982) Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Res 244:17–25

    CAS  Article  Google Scholar 

  49. Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–1718. https://doi.org/10.1126/science.279.5357.1714

    CAS  Article  Google Scholar 

  50. Klinkenberg I, Sambeth A, Blokland A (2011) Acetylcholine and attention. Behav Brain Res 221:430–442. https://doi.org/10.1016/j.bbr.2010.11.033

    CAS  Article  PubMed  Google Scholar 

  51. Kyriazi HT, Simons DJ (1993) Thalamocortical response transformations in simulated whisker barrels. J Neurosci 13:1601–1615

    CAS  Article  Google Scholar 

  52. Lamour Y, Dutar P, Jobert A, Dykes RW (1988) An iontophoretic study of single somatosensory neurons in rat granular cortex serving the limbs: a laminar analysis of glutamate and acetylcholine effects on receptive-field properties. J Neurophysiol 60:725–750

    CAS  Article  Google Scholar 

  53. Leem JW, Willis WD, Weller SC, Chung JM (1993) Differential activation and classification of cutaneous afferents in the rat. J Neurophysiol 70:2411–2424

    CAS  Article  Google Scholar 

  54. Levin ED, McClernon FJ, Rezvani AH (2006) Nicotinic effects on cognitive function: behavioral characterization, pharmacological specification, and anatomic localization. Psychopharmacology 184:523–539. https://doi.org/10.1007/s00213-005-0164-7

    CAS  Article  Google Scholar 

  55. Lin Y, Phillis JW (1991) Muscarinic agonist-mediated induction of long-term potentiation in rat cerebral cortex. Brain Res 551:342–345. https://doi.org/10.1016/0006-8993(91)90955-U

    CAS  Article  PubMed  Google Scholar 

  56. Martin-Cortecero J, Nuñez A (2014) Tactile response adaptation to whisker stimulation in the lemniscal somatosensory pathway of rats. Brain Res 1591:27–37. https://doi.org/10.1016/j.brainres.2014.10.002

    CAS  Article  PubMed  Google Scholar 

  57. McKenna TM, Ashe JH, Hui GK, Weinberger NM (1988) Muscarinic agonists modulate spontaneous and evoked unit discharge in auditory cortex of cat. Synapse 2:54–68. https://doi.org/10.1002/syn.890020109

    CAS  Article  PubMed  Google Scholar 

  58. Merrill DR, Bikson M, Jefferys JG (2005) Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 141:171–198. https://doi.org/10.1016/j.jneumeth.2004.10.020

    Article  PubMed  Google Scholar 

  59. Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10:1185–1201. https://doi.org/10.1016/0306-4522(83)90108-2

    CAS  Article  PubMed  Google Scholar 

  60. Metherate R, Ashe JH (1991) Basal forebrain stimulation modifies auditory cortex responsiveness by an action at muscarinic receptors. Brain Res 559:163–167

    CAS  Article  Google Scholar 

  61. Metherate R, Tremblay N, Dykes RW (1987) Acetylcholine permits long-term enhancement of neuronal responsiveness in cat primary somatosensory cortex. Neuroscience 22:75–81. https://doi.org/10.1016/0306-4522(87)90198-9

    CAS  Article  PubMed  Google Scholar 

  62. Metherate R, Tremblay N, Dykes RW (1988) The effects of acetylcholine on response properties of cat somatosensory cortical neurons. J Neurophysiol 59:1231–1252

    CAS  Article  Google Scholar 

  63. Minces V, Pinto L, Dan Y, Chiba AA (2017) Cholinergic shaping of neural correlations. Proc Natl Acad Sci 114:5725–5730. https://doi.org/10.1073/pnas.1621493114

    CAS  Article  PubMed  Google Scholar 

  64. Mountcastle VB, Talbot WH, Sakata H, Hyvarinen J (1969) Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J Neurophysiol 32:452–484

    CAS  Article  Google Scholar 

  65. Oldford E, Castro-Alamancos MA (2003) Input-specific effects of acetylcholine on sensory and intracortical evoked responses in the “barrel cortex” in vivo. Neuroscience 117:769–778. https://doi.org/10.1016/S0306-4522(02)00663-2

    CAS  Article  PubMed  Google Scholar 

  66. Öztürk S, Devecioğlu I, Beygi M et al (2019) Real-time performance of a tactile neuroprosthesis on awake behaving rats. IEEE Trans Neural Syst Rehabil Eng 27:1053–1062. https://doi.org/10.1109/TNSRE.2019.2910320

    Article  PubMed  Google Scholar 

  67. Paxinos G, Watson C (1997) The rat brain in stereotaxic coordinates, 3rd edn. Academic Press, San Diego

    Google Scholar 

  68. Perry E, Walker M, Grace J, Perry R (1999) Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci 22:273–280. https://doi.org/10.1016/S0166-2236(98)01361-7

    CAS  Article  PubMed  Google Scholar 

  69. Picciotto MR, Higley MJ, Mineur YS (2012) Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 76:116–129. https://doi.org/10.1016/j.neuron.2012.08.036

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Pinto DJ, Brumberg JC, Simons DJ (2000) Circuit dynamics and coding strategies in rodent somatosensory cortex. J Neurophysiol 83:1158–1166

    CAS  Article  Google Scholar 

  71. Pinto L, Goard MJ, Estandian D et al (2013) Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat Neurosci 16:1857–1863. https://doi.org/10.1038/nn.3552

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Poranen A, Hyvarinen J (1982) Effects of attention on multiunit responses to vibration in the somatosensory regions of the monkey’s brain. Electroencephalogr Clin Neurophysiol 53:525–537

    CAS  Article  Google Scholar 

  73. Porter JT, Johnson CK, Agmon A (2001) Diverse types of interneurons generate thalamus-evoked feedforward inhibition in the mouse barrel cortex. J Neurosci 21:2699–2710 (pii:21/8/2699)

    CAS  Article  Google Scholar 

  74. Poulet JFA, Petersen CCH (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–885. https://doi.org/10.1038/nature07150

    CAS  Article  PubMed  Google Scholar 

  75. Rasmusson DD, Dykes RW (1988) Long-term enhancement of evoked potentials in cat somatosensory cortex produced by co-activation of the basal forebrain and cutaneous receptors. Exp Brain Res 70:276–286

    CAS  Article  Google Scholar 

  76. Richardson RT, DeLong MR (1986) Nucleus basalis of Meynert neuronal activity during a delayed response task in monkey. Brain Res 399:364–368. https://doi.org/10.1016/0006-8993(86)91529-5

    CAS  Article  PubMed  Google Scholar 

  77. Sarter M, Hasselmo ME, Bruno JP, Givens B (2005) Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res Rev 48:98–111. https://doi.org/10.1016/j.brainresrev.2004.08.006

    CAS  Article  PubMed  Google Scholar 

  78. Sato H, Hata Y, Masui H, Tsumoto T (1987) A functional role of cholinergic innervation to neurons in the cat visual cortex. J Neurophysiol 58:765–780

    CAS  Article  Google Scholar 

  79. Semba K (2000) Multiple output pathways of the basal forebrain: organization, chemical heterogeneity, and roles in vigilance. Behav Brain Res 115:117–141. https://doi.org/10.1016/S0166-4328(00)00254-0

    CAS  Article  Google Scholar 

  80. Sillito AM, Kemp JA (1983) Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res 289:143–155

    CAS  Article  Google Scholar 

  81. Simons DJ (1978) Response properties of vibrissa units in rat SI somatosensory neocortex. J Neurophysiol 41:798–820

    CAS  Article  Google Scholar 

  82. Steinmetz PN, Roy A, Fitzgerald PJ et al (2000) Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404:187–190. https://doi.org/10.1038/35004588

    CAS  Article  PubMed  Google Scholar 

  83. Talbot WH, Darian-Smith I, Kornhuber HH, Mountcastle VB (1968) The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 31:301–334

    CAS  Article  Google Scholar 

  84. Tian MK, Bailey CD, De Biasi M et al (2011 ) Plasticity of prefrontal attention circuitry: upregulated muscarinic excitability in response to decreased nicotinic signaling following deletion of α5 or β2 subunits. J Neurosci 31:16458–16463

    CAS  Article  Google Scholar 

  85. Torres EM, Perry TA, Blockland A et al (1994) Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neuroscience 63:95–122. https://doi.org/10.1016/0306-4522(94)90010-8

    CAS  Article  PubMed  Google Scholar 

  86. Tremblay N, Warren RA, Dykes RW (1990a) Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. II. Cortical neurons excited by somatic stimuli. J Neurophysiol 64:1212–1222

    CAS  Article  Google Scholar 

  87. Tremblay N, Warren RA, Dykes RW (1990b) Electrophysiological studies of acetylcholine and the role of the basal forebrain in the somatosensory cortex of the cat. I. Cortical neurons excited by glutamate. J Neurophysiol 64:1199–1211

    CAS  Article  Google Scholar 

  88. Tsodyks M, Kenet T, Grinvald A, Arieli A (1999) Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science 286:1943–1946. https://doi.org/10.1126/science.286.5446.1943

    CAS  Article  PubMed  Google Scholar 

  89. Tutunculer B, Foffani G, Himes BT, Moxon KA (2006) Structure of the excitatory receptive fields of infragranular forelimb neurons in the rat primary somatosensory cortex responding to touch. Cereb Cortex 16:791–810. https://doi.org/10.1093/cercor/bhj023

    Article  PubMed  Google Scholar 

  90. Vahle-Hinz C, Detsch O, Siemers M, Kochs E (2007) Contributions of GABAergic and glutamatergic mechanisms to isoflurane-induced suppression of thalamic somatosensory information transfer. Exp Brain Res 176:159–172. https://doi.org/10.1007/s00221-006-0604-6

    CAS  Article  PubMed  Google Scholar 

  91. Van Der Zee A, Streefland C, Strosberg AD et al (1992) Visualization of cholinoceptive neurons in the rat neocortex: colocalization of muscarinic and nicotinic acetylcholine receptors. Mol Brain Res 14:326–336

    Article  Google Scholar 

  92. Vardar B, Güçlü B (2016) Differential effects of acetylcholine and atropine on vibrotactile responses of neurons in the hindpaw representation of rat SI cortex. Anat Int J Exp Clin Anat 10(1):O-20

    Google Scholar 

  93. Vardar B, Güçlü B (2017) Non-NMDA receptor-mediated vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex. Somatosens Mot Res 34:189–203. https://doi.org/10.1080/08990220.2017.1390450

    Article  PubMed  Google Scholar 

  94. Vardar B, Güçlü B (2018) Basal forebrain stimulation modulates vibrotactile responses of rat SI neurons based on cell type, layer, and in a time-dependent manner. Society for Neuroscience Abstracts, 44, program no. 392.03

  95. Vega-Bermudez F, Johnson KO (1999) SA1 and RA receptive fields, response variability, and population responses mapped with a probe array. J Neurophysiol 81:2701–2710

    CAS  Article  Google Scholar 

  96. Verdier D, Dykes RW (2001) Long-term cholinergic enhancement of evoked potentials in rat hindlimb somatosensory cortex displays characteristics of long-term potentiation. Exp Brain Res 137:71–82. https://doi.org/10.1007/s002210000646

    CAS  Article  PubMed  Google Scholar 

  97. Welker C, Woolsey TA (1974) Structure of layer IV in the somatosensory neocortex of the rat: description and comparison with the mouse. J Comp Neurol 158:437–453. https://doi.org/10.1002/cne.901580405

    CAS  Article  PubMed  Google Scholar 

  98. Whitsel BL, Kelly EF, Delemos KA et al (2000) Stability of rapidly adapting afferent entrainment vs responsivity. Somatosens Mot Res 17:13–31

    CAS  Article  Google Scholar 

  99. Yusufoğulları S, Kılınç D, Vardar B et al (2015) Sıçanda farklı korteks alanlarındaki katman kalınlıklarının histolojik olarak incelenmesi. In: Usta A (ed) BİYOMUT 2015, proceedings of 19th national biomedical engineering meeting, İstanbul, Turkey, no: S12

  100. Záborszky L, Heimer L, Eckenstein F, Leranth C (1986) GABAergic input to cholinergic forebrain neurons: an ultrastructural study using retrograde tracing of HRP and double immunolabeling. J Comp Neurol 250:282–295. https://doi.org/10.1002/cne.902500303

    Article  PubMed  Google Scholar 

  101. Záborszky L, Pang K, Somogyi J et al (1999) The basal forebrain corticopetal system revisited. Ann N Y Acad Sci 877:339–367. https://doi.org/10.1111/j.1749-6632.1999.tb09276.x

    Article  PubMed  Google Scholar 

  102. Záborszky L, van den Pol AN, Gyengesi E (2012) The basal forebrain cholinergic projection system in mice. In: The mouse nervous system. Academic Press, Cambridge, pp 684–718

  103. Záborszky L, Csordas A, Mosca K et al (2015) Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cereb Cortex 25:118–137. https://doi.org/10.1093/cercor/bht210

    Article  PubMed  Google Scholar 

  104. Záborszky L, Gombkoto P, Varsanyi P et al (2018) Specific basal forebrain-cortical cholinergic circuits coordinate cognitive operations. J Neurosci 38:9446–9458. https://doi.org/10.1523/JNEUROSCI.1676-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Boğaziçi University Research Fund (BAP no. 17XP2) granted to Dr. Güçlü. We would like to thank Sevgi Öztürk and Begüm Devlet for help in the experiments.

Funding

This study was funded by Boğaziçi University Research Fund (BAP no. 17XP2).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Burak Güçlü.

Ethics declarations

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted (Boğaziçi University Institutional Ethics Committee for the Local Use of Animals in Experiments, 16.03.2017).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vardar, B., Güçlü, B. Effects of basal forebrain stimulation on the vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex. Brain Struct Funct 225, 1761–1776 (2020). https://doi.org/10.1007/s00429-020-02091-w

Download citation

Keywords

  • Attention
  • Touch
  • Somatosensory cortex
  • Cholinergic system
  • Deep brain stimulation
  • Synchronization
  • Microinjection