Skip to main content
Log in

In vivo localization of cortical areas using a 3D computerized atlas of the marmoset brain

  • Methods Paper
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

We created a volumetric template of the marmoset (Callithrix jacchus) brain, which enables localization of the cortical areas defined in the Paxinos et al. (The marmoset brain in stereotaxic coordinates. Elsevier Academic Press, Cambridge, 2012) marmoset brain atlas, as well as seven broader cortical regions (occipital, temporal, parietal, prefrontal, motor, limbic, insular), different brain compartments (white matter, gray matter, cerebro-spinal fluid including ventricular spaces), and various other structures (brain stem, cerebellum, olfactory bulb, hippocampus). The template was designed from T1-weighted MR images acquired using a 3 T MRI scanner. It was based on a single fully segmented marmoset brain image, which was transported onto the mean of 13 adult marmoset brain images using a diffeomorphic strategy that fully preserves the brain topology. In addition, we offer an automatic segmentation pipeline which fully exploits the proposed template. The segmentation pipeline was quantitatively assessed by comparing the results of manual and automated segmentations. An associated program, written in Python, can be used from a command-line interface, or used interactively as a module of the 3DSlicer software. This program can be applied to the analysis of multimodal images, to map specific cortical areas in lesions or to define the seeds for further tractography analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbott DH, Barnett DK, Colman RJ, Yamamoto ME, Schultz-Darken NJ (2003) Aspects of common marmoset basic biology and life history important for biomedical research. Comp Med 53:339–350

    CAS  PubMed  Google Scholar 

  • Amlien IK, Fjell AM, Tamnes CK, Grydeland H, Krogsrud SK, Chaplin TA, Rosa MGP, Walhovd KB (2016) Organizing principles of human cortical development-thickness and area from 4 to 30 years: insights from comparative primate neuroanatomy. Cereb Cortex 26:257–267

    Article  PubMed  Google Scholar 

  • Ashburner J, Friston KJ (2005) Unified segmentation. Neuroimage 26:839–851

    Article  Google Scholar 

  • Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC (2011) A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54:2033–2044

    Article  PubMed  Google Scholar 

  • Bakker R, Tiesinga P, Kotter R (2015) The scalable brain atlas: instant web-based access to public brain atlases and related content. Neuroinformatics 13:353–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakola S, Burman KJ, Rosa MGP (2015) The cortical motor system of the marmoset monkey (Callithrix jacchus). Neurosci Res 93:72–81

    Article  PubMed  Google Scholar 

  • Belcher AM, Yen CC, Notardonato L, Ross TJ, Volkow ND, Yang Y, Stein EA, Silva AC, Tomasi D (2016) Functional connectivity hubs and networks in the awake marmoset brain. Front Integr Neurosci 10:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Bock NA, Kocharyan A, Liu JV, Silva AC (2009) Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging. J Neurosci Methods 185:15–22

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourne JA, Rosa MGP (2006) Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). Cereb Cortex 16:405–414

    Article  PubMed  Google Scholar 

  • Burkart JM, Finkenwirth C (2015) Marmosets as model species in neuroscience and evolutionary anthropology. Neurosci Res 93:8–19

    Article  PubMed  Google Scholar 

  • Burman KJ, Palmer SM, Gamberini M, Rosa MGP (2006) Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas. J Comp Neurol 495:149–172

    Article  PubMed  Google Scholar 

  • Burman KJ, Lui LL, Rosa MGP, Bourne JA (2007) Development of non-phosphorylated neurofilament protein expression in neurones of the New World monkey dorsolateral frontal cortex. Eur J Neurosci 25:1767–1779

    Article  PubMed  Google Scholar 

  • Burman KJ, Reser DH, Richardson KE, Gaulke H, Worthy KH, Rosa MGP (2011) Subcortical projections to the frontal pole in the marmoset monkey. Eur J Neurosci 34:303–319

    Article  PubMed  Google Scholar 

  • Burman KJ, Bakola S, Richardson KE, Reser DH, Rosa MGP (2014) Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey. J Comp Neurol 522:3683–3716

    Article  PubMed  Google Scholar 

  • Burman KJ, Bakola S, Richardson KE, Yu HH, Reser DH, Rosa MGP (2015) Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: connectionally distinct subdivisions of the lateral premotor cortex. J Comp Neurol 523:1222–1247

    Article  PubMed  Google Scholar 

  • Calabrese E, Hickey P, Hulette C, Zhang J, Parente B, Lad SP, Johnson GA (2015) Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization. Hum Brain Mapp 36:3167–3178

    Article  PubMed  PubMed Central  Google Scholar 

  • Converse AK, Aubert Y, Farhoud M, Weichert JP, Rowland IJ, Ingrisano NM, Allers KA, Sommer B, Abbott DH (2012) Positron emission tomography assessment of 8-OH-DPAT-mediated changes in an index of cerebral glucose metabolism in female marmosets. Neuroimage 60:447–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans AC, Janke AL, Collins DL, Baillet S (2012) Brain templates and atlases. Neuroimage 62:911–922

    Article  PubMed  Google Scholar 

  • Fedorov A, Beichel R, Kalpathy-Cramer J et al (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30:1323–1341

    Article  PubMed  PubMed Central  Google Scholar 

  • Fiot JB, Raguet H, Risser L, Cohen LD, Fripp J, Vialard FX, Alzheimer’s Disease Neuroimaging I (2014) Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer’s disease progression. Neuroimage Clin 4:718–729

    Article  PubMed  PubMed Central  Google Scholar 

  • Fuster JM (2001) The prefrontal cortex—an update: time is of the essence. Neuron 30:319–333

    Article  CAS  PubMed  Google Scholar 

  • Fuster JM (2002) Frontal lobe and cognitive development. J Neurocytol 31:373–385

    Article  PubMed  Google Scholar 

  • Garea-Rodriguez E, Schlumbohm C, Czeh B, Konig J, Helms G, Heckmann C, Meller B, Meller J, Fuchs E (2012) Visualizing dopamine transporter integrity with iodine-123-FP-CIT SPECT in combination with high resolution MRI in the brain of the common marmoset monkey. J Neurosci Methods 210:195–201

    Article  CAS  PubMed  Google Scholar 

  • Gebhard R, Zilles K, Schleicher A, Everitt BJ, Robbins TW, Divac I (1995) Parcellation of the frontal cortex of the New World monkey Callithrix jacchus by eight neurotransmitter-binding sites. Anat Embryol (Berl) 191:509–517

    Article  CAS  Google Scholar 

  • Ghahremani M, Hutchison RM, Menon RS, Everling S (2016) Frontoparietal functional connectivity in the common marmoset. Cereb Cortex. https://doi.org/10.1093/cercor/bhw198

    Article  Google Scholar 

  • Hashikawa T, Nakatomi R, Iriki A (2015) Current models of the marmoset brain. Neurosci Res 93:116–127

    Article  PubMed  Google Scholar 

  • Karcher H (1977) Riemannian center of mass and mollifier smoothing. Commun Pure Appl Math 30:509–541

    Article  Google Scholar 

  • Krubitzer LA, Kaas JH (1990) The organization and connections of somatosensory cortex in marmosets. J Neurosci 10:952–974

    Article  CAS  PubMed  Google Scholar 

  • Lui LL, Bourne JA, Rosa MGP (2006) Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). Cereb Cortex 16:162–177

    Article  PubMed  Google Scholar 

  • Majka P, Kublik E, Furga G, Wojcik DK (2012) Common atlas format and 3D brain atlas reconstructor: infrastructure for constructing 3D brain atlases. Neuroinformatics 10:181–197

    Article  PubMed  PubMed Central  Google Scholar 

  • Majka P, Kowalski JM, Chlodzinska N, Wojcik DK (2013) 3D brain atlas reconstructor service–online repository of three-dimensional models of brain structures. Neuroinformatics 11:507–518

    Article  PubMed  PubMed Central  Google Scholar 

  • Majka P, Chaplin TA, Yu HH, Tolpygo A, Mitra PP, Wojcik DK, Rosa MGP (2016) Towards a comprehensive atlas of cortical connections in a primate brain: mapping tracer injection studies of the common marmoset into a reference digital template. J Comp Neurol 524:2161–2181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri FA, Koechlin E, Rosa MGP, Buckley MJ (2017) Managing competing goals—a key role for the frontopolar cortex. Nat Rev Neurosci 18:645–657. https://doi.org/10.1038/nrn.2017.111

    Article  CAS  PubMed  Google Scholar 

  • Marmoset Genome Sequencing and Analysis Consortium (2014) The common marmoset genome provides insight into primate biology and evolution. Nat Genet 46:850–857

    Article  CAS  Google Scholar 

  • Marx V (2016) Neurobiology: learning from marmosets. Nat Methods 13:911–916

    Article  CAS  PubMed  Google Scholar 

  • Meyer JS, Brevard ME, Piper BJ, Ali SF, Ferris CF (2006) Neural effects of MDMA as determined by functional magnetic resonance imaging and magnetic resonance spectroscopy in awake marmoset monkeys. Ann N Y Acad Sci 1074:365–376

    Article  CAS  PubMed  Google Scholar 

  • Miller CT, Freiwald WA, Leopold DA, Mitchell JF, Silva AC, Wang X (2016) Marmosets: a neuroscientific model of human social behavior. Neuron 90:219–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missler M, Wolff JR, Heger W, Merker HJ, Treiber AM, Scheib R, Crook GA (1992) Developmental biology of the common marmoset: proposal for a “postnatal staging”. J Med Primatol 21:285–298

    CAS  PubMed  Google Scholar 

  • Missler M, Eins S, Merker HJ, Rothe H, Wolff JR (1993a) Pre-and postnatal development of the primary visual cortex of the common marmoset. I. A changing space for synaptogenesis. J Comp Neurol 333:41–52

    Article  CAS  PubMed  Google Scholar 

  • Missler M, Wolff A, Merker HJ, Wolff JR (1993b) Pre- and postnatal development of the primary visual cortex of the common marmoset. II. Formation, remodelling, and elimination of synapses as overlapping processes. J Comp Neurol 333:53–67

    Article  CAS  PubMed  Google Scholar 

  • Mitchell JF, Leopold DA (2015) The marmoset monkey as a model for visual neuroscience. Neurosci Res 93:20–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Newman JD, Kenkel WM, Aronoff EC, Bock NA, Zametkin MR, Silva AC (2009) A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus. Brain Res Rev 62:1–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Nummela SU, Jovanovic V, de la Mothe L, Miller CT (2017) Social context-dependent activity in marmoset frontal cortex populations during natural conversations. J Neurosci 37:7036–7047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okano H, Mitra P (2015) Brain-mapping projects using the common marmoset. Neurosci Res 93:3–7

    Article  PubMed  Google Scholar 

  • Okano H, Sasaki E, Yamamori T, Iriki A, Shimogori T, Yamaguchi Y, Kasai K, Miyawaki A (2016) Brain/MINDS: a Japanese National Brain Project for Marmoset Neuroscience. Neuron 92:582–590

    Article  CAS  PubMed  Google Scholar 

  • Palazzi X, Bordier N (2008) The marmoset brain in stereotaxic coordinates. Springer, Berlin

    Book  Google Scholar 

  • Paxinos G, Watson C, Petrides M, Rosa MGP, Tokuno H (2012) The marmoset brain in stereotaxic coordinates. Elsevier Academic Press, Cambridge

    Google Scholar 

  • Preuss TM, Goldman-Rakic PS (1991) Myelo- and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca. J Comp Neurol 310:429–474

    Article  CAS  PubMed  Google Scholar 

  • Prins NW, Pohlmeyer EA, Debnath S, Mylavarapu R, Geng S, Sanchez JC, Rothen D, Prasad A (2017) Common marmoset (Callithrix jacchus) as a primate model for behavioral neuroscience studies. J Neurosci Methods 284:35–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Sadoun A, Strelnikov K, Bonte E, Fonta C, Girard P (2015) Cognitive impairment in a young marmoset reveals lateral ventriculomegaly and a mild hippocampal atrophy: a case report. Sci Rep 5:16046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki E (2015) Prospects for genetically modified non-human primate models, including the common marmoset. Neurosci Res 93:110–115

    Article  CAS  PubMed  Google Scholar 

  • Sawiak SJ, Shiba Y, Oikonomidis L, Windle CP, Santangelo AM, Grydeland H, Cockcroft G, Bullmore ET, Roberts AC (2018) Trajectories and milestones of cortical and subcortical development of the marmoset brain from infancy to adulthood. Cereb Cortex 28:4440–4453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senoo A, Tokuno H, Watson C (2015) Mini-atlas of the marmoset brain. Neurosci Res 93:128–135

    Article  PubMed  Google Scholar 

  • Silva AC (2017) Anatomical and functional neuroimaging in awake, behaving marmosets. Dev Neurobiol 77:373–389

    Article  PubMed  Google Scholar 

  • Solomon SG, Rosa MGP (2014) A simpler primate brain: the visual system of the marmoset monkey. Front Neural Circuits 8:96

    Article  PubMed  PubMed Central  Google Scholar 

  • Spinelli S, Pennanen L, Dettling AC, Feldon J, Higgins GA, Pryce CR (2004) Performance of the marmoset monkey on computerized tasks of attention and working memory. Brain Res Cogn Brain Res 19:123–137

    Article  PubMed  Google Scholar 

  • Stephan H, Baron G, Schwerdtfeger WK (1980) The brain of the common marmoset (Callithrix jacchus). A stereotaxic atlas. Springer, Berlin

    Book  Google Scholar 

  • Suzuki W, Banno T, Miyakawa N, Abe H, Goda N, Ichinohe N (2015) Mirror neurons in a new world monkey, common marmoset. Front Neurosci 9:459

    Article  PubMed  PubMed Central  Google Scholar 

  • Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Med Imaging 15:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Takemoto A, Miwa M, Koba R, Yamaguchi C, Suzuki H, Nakamura K (2015) Individual variability in visual discrimination and reversal learning performance in common marmosets. Neurosci Res 93:136–143

    Article  PubMed  Google Scholar 

  • Tardif SD, Smucny DA, Abbott DH, Mansfield K, Schultz-Darken N, Yamamoto ME (2003) Reproduction in captive common marmosets (Callithrix jacchus). Comp Med 53:364–368

    CAS  PubMed  Google Scholar 

  • Thirion JP (1998) Image matching as a diffusion process: an analogy with Maxwell’s demons. Med Image Anal 2:243–260

    Article  CAS  PubMed  Google Scholar 

  • Toarmino CR, Yen CCC, Papoti D, Bock NA, Leopold DA, Miller CT, Silva AC (2017) Functional magnetic resonance imaging of auditory cortical fields in awake marmosets. Neuroimage 162:86–92

    Article  PubMed  PubMed Central  Google Scholar 

  • Tomioka I, Ishibashi H, Minakawa EN et al (2017) Transgenic monkey model of the polyglutamine diseases recapitulating progressive neurological symptoms. eNeuro 4(2). https://doi.org/10.1523/ENEURO.0250-16.2017

  • Tu TW, Turtzo LC, Williams RA, Lescher JD, Dean DD, Frank JA (2014) Imaging of spontaneous ventriculomegaly and vascular malformations in Wistar rats: implications for preclinical research. J Neuropathol Exp Neurol 73:1152–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA, Gee JC (2010) N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 29:1310–1320

    Article  PubMed  PubMed Central  Google Scholar 

  • Vercauteren T, Pennec X, Perchant A, Ayache N (2008) Symmetric log-domain diffeomorphic Registration: a demons-based approach. Medical image computing and computer-assisted intervention: MICCAI. Int Conf Med Image Comput Comput Assist Interv 11:754–761

    Google Scholar 

  • Vialard FX, Risser L, Rueckert D, Cotter CJ (2012a) Diffeomorphic 3D image registration via geodesic shooting using an efficient adjoint calculation. Int J Comput 97:229–241

    Google Scholar 

  • Vialard FX, Risser L, Rueckert D, Holm DD (2012b) Diffeomorphic atlas estimation using geodesic shooting on volumetric images. Annl BMVA 5:1–12

    Google Scholar 

  • Woodward A, Hashikawa T, Maeda M, Kaneko T, Hikishima K, Iriki A, Okano H, Yamaguchi Y (2018) The brain/MINDS 3D digital marmoset brain atlas. Sci Data 5:180009. https://doi.org/10.1038/sdata.2018.9

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeterian EH, Pandya DN, Tomaiuolo F, Petrides M (2012) The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48:58–81

    Article  PubMed  Google Scholar 

  • Yokoyama C, Yamanaka H, Onoe K, Kawasaki A, Nagata H, Shirakami K, Doi H, Onoe H (2010) Mapping of serotonin transporters by positron emission tomography with [11C]DASB in conscious common marmosets: comparison with rhesus monkeys. Synapse 64:594–601

    Article  CAS  PubMed  Google Scholar 

  • Yuasa S, Nakamura K, Kohsaka S (2010) Stereotaxic atlas of the marmoset brain. With immunohistochemical architecture and MR images. National Institute of Neuroscience (JP), Tokyo

    Google Scholar 

  • Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128

    Article  PubMed  Google Scholar 

  • Zhu SC, Yuille A (1996) Region competition: unifying snakes, region growing, and Bayes/mdl for multiband image segmentation. IEEE Trans Pattern Anal Mach Intell 18:884–900

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Tristan Chaplin and Piotr Majka for generating the 3D map of cytoarchitectural areas of the marmoset brain derived from the atlas of (Paxinos et al. 2012). Our gratitude goes to MRI platform (INSERM UMR1214) for their priceless assistance. We also thank the staff of the CerCo animal rearing facilities and Emilie Rapha for their help with animal preparation and monitoring.

Funding

This work was financially supported by the University Paul Sabatier, Toulouse 3 (AO1 MST2I_2013) and the Toulouse Mind and brain Institute (TMBI, AO2015). A.S. Ph.D. was Granted by University Paul Sabatier/Toulouse 3 and Foundation for Medical Research (FDT20160435166). The participation of MGP Rosa was funded by the Australian Research Council’s Centre of Excellence for Integrative Brain function (CE140100007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marcello G. P. Rosa or Caroline Fonta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving animals/ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The project received the regional (MP/03/76/11/12) and the governmental authorization from the MENESR (project 05215.03).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1009 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Risser, L., Sadoun, A., Mescam, M. et al. In vivo localization of cortical areas using a 3D computerized atlas of the marmoset brain. Brain Struct Funct 224, 1957–1969 (2019). https://doi.org/10.1007/s00429-019-01869-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-019-01869-x

Keywords

Navigation